Type FalsePositives
Namespace tensorflow.keras.metrics
Parent _ConfusionMatrixConditionCount
Interfaces IFalsePositives
Calculates the number of false positives. For example, if `y_true` is [0, 1, 0, 0] and `y_pred` is [0, 0, 1, 1]
then the false positives value is 2. If the weights were specified as
[0, 0, 1, 0] then the false positives value would be 1. If `sample_weight` is given, calculates the sum of the weights of
false positives. This metric creates one local variable, `accumulator`
that is used to keep track of the number of false positives. If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.FalsePositives() m.update_state([0, 1, 0, 0], [0, 0, 1, 1]) print('Final result: ', m.result().numpy()) # Final result: 2
Properties
- accumulator
- activity_regularizer
- activity_regularizer_dyn
- built
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- init_thresholds
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- stateful
- submodules
- submodules_dyn
- supports_masking
- thresholds
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn