LostTech.TensorFlow : API Documentation

Type SparseCategoricalAccuracy

Namespace tensorflow.keras.metrics

Parent MeanMetricWrapper

Interfaces ISparseCategoricalAccuracy

Calculates how often predictions matches integer labels.

For example, if `y_true` is [[2], [1]] and `y_pred` is [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] then the categorical accuracy is 1/2 or.5. If the weights were specified as [0.7, 0.3] then the categorical accuracy would be.3. You can provide logits of classes as `y_pred`, since argmax of logits and probabilities are same.

This metric creates two local variables, `total` and `count` that are used to compute the frequency with which `y_pred` matches `y_true`. This frequency is ultimately returned as `sparse categorical accuracy`: an idempotent operation that simply divides `total` by `count`.

If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values.

Usage: Usage with tf.keras API:
Show Example
m = tf.keras.metrics.SparseCategoricalAccuracy()
            m.update_state([[2], [1]], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]])
            print('Final result: ', m.result().numpy())  # Final result: 0.5 


Public properties

PythonFunctionContainer activity_regularizer get; set;

object activity_regularizer_dyn get; set;

bool built get; set;

object count get; set;

object dtype get;

object dtype_dyn get;

bool dynamic get;

object dynamic_dyn get;

IList<Node> inbound_nodes get;

object inbound_nodes_dyn get;

IList<object> input get;

object input_dyn get;

object input_mask get;

object input_mask_dyn get;

IList<object> input_shape get;

object input_shape_dyn get;

object input_spec get; set;

object input_spec_dyn get; set;

IList<object> losses get;

object losses_dyn get;

IList<object> metrics get;

object metrics_dyn get;

object name get;

object name_dyn get;

object name_scope get;

object name_scope_dyn get;

IList<object> non_trainable_variables get;

object non_trainable_variables_dyn get;

IList<object> non_trainable_weights get;

object non_trainable_weights_dyn get;

IList<object> outbound_nodes get;

object outbound_nodes_dyn get;

IList<object> output get;

object output_dyn get;

object output_mask get;

object output_mask_dyn get;

object output_shape get;

object output_shape_dyn get;

object PythonObject get;

string reduction get; set;

bool stateful get; set;

ValueTuple<object> submodules get;

object submodules_dyn get;

bool supports_masking get; set;

object total get; set;

bool trainable get; set;

object trainable_dyn get; set;

object trainable_variables get;

object trainable_variables_dyn get;

IList<object> trainable_weights get;

object trainable_weights_dyn get;

IList<object> updates get;

object updates_dyn get;

object variables get;

object variables_dyn get;

IList<object> weights get;

object weights_dyn get;