Type Recall
Namespace tensorflow.keras.metrics
Parent Metric
Interfaces IRecall
Computes the recall of the predictions with respect to the labels. For example, if `y_true` is [0, 1, 1, 1] and `y_pred` is [1, 0, 1, 1]
then the recall value is 2/(2+1) ie. 0.66. If the weights were specified as
[0, 0, 1, 0] then the recall value would be 1. This metric creates two local variables, `true_positives` and
`false_negatives`, that are used to compute the recall. This value is
ultimately returned as `recall`, an idempotent operation that simply divides
`true_positives` by the sum of `true_positives` and `false_negatives`. If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values. If `top_k` is set, recall will be computed as how often on average a class
among the labels of a batch entry is in the top-k predictions. If `class_id` is specified, we calculate recall by considering only the
entries in the batch for which `class_id` is in the label, and computing the
fraction of them for which `class_id` is above the threshold and/or in the
top-k predictions. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.Recall() m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) print('Final result: ', m.result().numpy()) # Final result: 0.66
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- class_id
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- false_negatives
- inbound_nodes
- inbound_nodes_dyn
- init_thresholds
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- stateful
- submodules
- submodules_dyn
- supports_masking
- thresholds
- top_k
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- true_positives
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn