Type CategoricalCrossentropy
Namespace tensorflow.keras.metrics
Parent MeanMetricWrapper
Interfaces ICategoricalCrossentropy
Computes the crossentropy metric between the labels and predictions. This is the crossentropy metric class to be used when there are multiple
label classes (2 or more). Here we assume that labels are given as a `one_hot`
representation. eg., When labels values are [2, 0, 1],
`y_true` = [[0, 0, 1], [1, 0, 0], [0, 1, 0]]. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.CategoricalCrossentropy() m.update_state([[0, 1, 0], [0, 0, 1]], [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) # EPSILON = 1e-7, y = y_true, y` = y_pred # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # xent = -sum(y * log(y'), axis = -1) # = -((log 0.95), (log 0.1)) # = [0.051, 2.302] # Reduced xent = (0.051 + 2.302) / 2 print('Final result: ', m.result().numpy()) # Final result: 1.176
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- count
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- reduction
- stateful
- submodules
- submodules_dyn
- supports_masking
- total
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public static methods
CategoricalCrossentropy NewDyn(ImplicitContainer<T> name, object dtype, ImplicitContainer<T> from_logits, ImplicitContainer<T> label_smoothing)
Creates a `MeanMetricWrapper` instance.
Parameters
-
ImplicitContainer<T>
name - (Optional) string name of the metric instance.
-
object
dtype - (Optional) data type of the metric result.
-
ImplicitContainer<T>
from_logits -
ImplicitContainer<T>
label_smoothing