Type CosineSimilarity
Namespace tensorflow.keras.metrics
Parent MeanMetricWrapper
Interfaces ICosineSimilarity
Computes the cosine similarity between the labels and predictions. cosine similarity = (a. b) / ||a|| ||b||
[Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) For example, if `y_true` is [0, 1, 1], and `y_pred` is [1, 0, 1], the cosine
similarity is 0.5. This metric keeps the average cosine similarity between `predictions` and
`labels` over a stream of data. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.CosineSimilarity(axis=1) m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]]) # l2_norm(y_true) = [[0., 1.], [1./1.414], 1./1.414]]] # l2_norm(y_pred) = [[1., 0.], [1./1.414], 1./1.414]]] # l2_norm(y_true). l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]] # result = mean(sum(l2_norm(y_true). l2_norm(y_pred), axis=1)) = ((0. + 0.) + (0.5 + 0.5)) / 2 print('Final result: ', m.result().numpy()) # Final result: 0.5
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- count
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- reduction
- stateful
- submodules
- submodules_dyn
- supports_masking
- total
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn