Type TruePositives
Namespace tensorflow.keras.metrics
Parent _ConfusionMatrixConditionCount
Interfaces ITruePositives
Calculates the number of true positives.  For example, if `y_true` is [0, 1, 1, 1] and `y_pred` is [1, 0, 1, 1]
then the true positives value is 2.  If the weights were specified as
[0, 0, 1, 0] then the true positives value would be 1.  If `sample_weight` is given, calculates the sum of the weights of
true positives. This metric creates one local variable, `true_positives`
that is used to keep track of the number of true positives.  If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.  Usage:
Usage with tf.keras API: 
		
		
		
			
  Show Example
  
			m = tf.keras.metrics.TruePositives()
            m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
            print('Final result: ', m.result().numpy())  # Final result: 2 
Properties
- accumulator
 - activity_regularizer
 - activity_regularizer_dyn
 - built
 - dtype
 - dtype_dyn
 - dynamic
 - dynamic_dyn
 - inbound_nodes
 - inbound_nodes_dyn
 - init_thresholds
 - input
 - input_dyn
 - input_mask
 - input_mask_dyn
 - input_shape
 - input_shape_dyn
 - input_spec
 - input_spec_dyn
 - losses
 - losses_dyn
 - metrics
 - metrics_dyn
 - name
 - name_dyn
 - name_scope
 - name_scope_dyn
 - non_trainable_variables
 - non_trainable_variables_dyn
 - non_trainable_weights
 - non_trainable_weights_dyn
 - outbound_nodes
 - outbound_nodes_dyn
 - output
 - output_dyn
 - output_mask
 - output_mask_dyn
 - output_shape
 - output_shape_dyn
 - PythonObject
 - stateful
 - submodules
 - submodules_dyn
 - supports_masking
 - thresholds
 - trainable
 - trainable_dyn
 - trainable_variables
 - trainable_variables_dyn
 - trainable_weights
 - trainable_weights_dyn
 - updates
 - updates_dyn
 - variables
 - variables_dyn
 - weights
 - weights_dyn