Type VocabInfo
Namespace tensorflow.train
Parent PythonObjectContainer
Interfaces IVocabInfo
Vocabulary information for warm-starting. See
tf.estimator.WarmStartSettings
for examples of using
VocabInfo to warm-start. Args:
new_vocab: [Required] A path to the new vocabulary file (used with the model
to be trained).
new_vocab_size: [Required] An integer indicating how many entries of the new
vocabulary will used in training.
num_oov_buckets: [Required] An integer indicating how many OOV buckets are
associated with the vocabulary.
old_vocab: [Required] A path to the old vocabulary file (used with the
checkpoint to be warm-started from).
old_vocab_size: [Optional] An integer indicating how many entries of the old
vocabulary were used in the creation of the checkpoint. If not provided,
the entire old vocabulary will be used.
backup_initializer: [Optional] A variable initializer used for variables
corresponding to new vocabulary entries and OOV. If not provided, these
entries will be zero-initialized.
axis: [Optional] Denotes what axis the vocabulary corresponds to. The
default, 0, corresponds to the most common use case (embeddings or
linear weights for binary classification / regression). An axis of 1
could be used for warm-starting output layers with class vocabularies. Returns:
A `VocabInfo` which represents the vocabulary information for warm-starting. Raises:
ValueError: `axis` is neither 0 or 1. Example Usage:
Show Example
embeddings_vocab_info = tf.VocabInfo( new_vocab='embeddings_vocab', new_vocab_size=100, num_oov_buckets=1, old_vocab='pretrained_embeddings_vocab', old_vocab_size=10000, backup_initializer=tf.compat.v1.truncated_normal_initializer( mean=0.0, stddev=(1 / math.sqrt(embedding_dim))), axis=0) softmax_output_layer_kernel_vocab_info = tf.VocabInfo( new_vocab='class_vocab', new_vocab_size=5, num_oov_buckets=0, # No OOV for classes. old_vocab='old_class_vocab', old_vocab_size=8, backup_initializer=tf.compat.v1.glorot_uniform_initializer(), axis=1) softmax_output_layer_bias_vocab_info = tf.VocabInfo( new_vocab='class_vocab', new_vocab_size=5, num_oov_buckets=0, # No OOV for classes. old_vocab='old_class_vocab', old_vocab_size=8, backup_initializer=tf.compat.v1.zeros_initializer(), axis=0) #Currently, only axis=0 and axis=1 are supported.