LostTech.TensorFlow : API Documentation

Type tf.layers

Namespace tensorflow

Public static methods

object average_pooling1d(object inputs, object pool_size, object strides, string padding, string data_format, string name)

Average Pooling layer for 1D inputs. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.AveragePooling1D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 3.
object pool_size
An integer or tuple/list of a single integer, representing the size of the pooling window.
object strides
An integer or tuple/list of a single integer, specifying the strides of the pooling operation.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
string name
A string, the name of the layer.
Returns
object
The output tensor, of rank 3.

object average_pooling1d_dyn(object inputs, object pool_size, object strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object name)

Average Pooling layer for 1D inputs. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.AveragePooling1D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 3.
object pool_size
An integer or tuple/list of a single integer, representing the size of the pooling window.
object strides
An integer or tuple/list of a single integer, specifying the strides of the pooling operation.
ImplicitContainer<T> padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
object name
A string, the name of the layer.
Returns
object
The output tensor, of rank 3.

object average_pooling2d(object inputs, object pool_size, object strides, string padding, string data_format, string name)

Average pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.AveragePooling2D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 4.
object pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
object strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object average_pooling2d_dyn(object inputs, object pool_size, object strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object name)

Average pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.AveragePooling2D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 4.
object pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
object strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
ImplicitContainer<T> data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
object name
A string, the name of the layer.
Returns
object
Output tensor.

object average_pooling3d(object inputs, object pool_size, object strides, string padding, string data_format, string name)

Average pooling layer for 3D inputs (e.g. volumes). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.AveragePooling3D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 5.
object pool_size
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
object strides
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object average_pooling3d_dyn(object inputs, object pool_size, object strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object name)

Average pooling layer for 3D inputs (e.g. volumes). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.AveragePooling3D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 5.
object pool_size
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
object strides
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
ImplicitContainer<T> data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
object name
A string, the name of the layer.
Returns
object
Output tensor.

object batch_normalization(IEnumerable<IGraphNodeBase> inputs, int axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, IGraphNodeBase training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
IGraphNodeBase training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization(IEnumerable<IGraphNodeBase> inputs, int axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, bool training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization(IGraphNodeBase inputs, int axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, IGraphNodeBase training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IGraphNodeBase inputs
Tensor input.
int axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
IGraphNodeBase training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization(IGraphNodeBase inputs, IEnumerable<int> axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, IGraphNodeBase training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IGraphNodeBase inputs
Tensor input.
IEnumerable<int> axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
IGraphNodeBase training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization(IGraphNodeBase inputs, int axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, bool training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IGraphNodeBase inputs
Tensor input.
int axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization(IGraphNodeBase inputs, IEnumerable<int> axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, bool training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IGraphNodeBase inputs
Tensor input.
IEnumerable<int> axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, bool training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
IEnumerable<int> axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> axis, double momentum, double epsilon, bool center, bool scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, IGraphNodeBase training, bool trainable, string name, Nullable<bool> reuse, bool renorm, object renorm_clipping, double renorm_momentum, object fused, Nullable<int> virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
IEnumerable<int> axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
double momentum
Momentum for the moving average.
double epsilon
Small float added to variance to avoid dividing by zero.
bool center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
bool scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
IGraphNodeBase training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
bool renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
double renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
Nullable<int> virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object batch_normalization_dyn(object inputs, ImplicitContainer<T> axis, ImplicitContainer<T> momentum, ImplicitContainer<T> epsilon, ImplicitContainer<T> center, ImplicitContainer<T> scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, ImplicitContainer<T> training, ImplicitContainer<T> trainable, object name, object reuse, ImplicitContainer<T> renorm, object renorm_clipping, ImplicitContainer<T> renorm_momentum, object fused, object virtual_batch_size, object adjustment)

Functional interface for the batch normalization layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.BatchNormalization instead. In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used (consult the `tf.keras.layers.batch_normalization` documentation).

Reference: http://arxiv.org/abs/1502.03167

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Sergey Ioffe, Christian Szegedy

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example:
Parameters
object inputs
Tensor input.
ImplicitContainer<T> axis
An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
ImplicitContainer<T> momentum
Momentum for the moving average.
ImplicitContainer<T> epsilon
Small float added to variance to avoid dividing by zero.
ImplicitContainer<T> center
If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored.
ImplicitContainer<T> scale
If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer.
ImplicitContainer<T> beta_initializer
Initializer for the beta weight.
ImplicitContainer<T> gamma_initializer
Initializer for the gamma weight.
ImplicitContainer<T> moving_mean_initializer
Initializer for the moving mean.
ImplicitContainer<T> moving_variance_initializer
Initializer for the moving variance.
object beta_regularizer
Optional regularizer for the beta weight.
object gamma_regularizer
Optional regularizer for the gamma weight.
object beta_constraint
An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object gamma_constraint
An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`.
ImplicitContainer<T> training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
String, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
ImplicitContainer<T> renorm
Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.
object renorm_clipping
A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.
ImplicitContainer<T> renorm_momentum
Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference.
object fused
if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation.
object virtual_batch_size
An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution.
object adjustment
A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified.
Returns
object
Output tensor.
Show Example
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) 

#...

update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])

object conv1d(IEnumerable<IGraphNodeBase> inputs, int filters, int kernel_size, int strides, string padding, string data_format, int dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, object reuse)

Functional interface for 1D convolution layer (e.g. temporal convolution). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv1D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
int strides
An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
int dilation_rate
An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv1d(IGraphNodeBase inputs, int filters, int kernel_size, int strides, string padding, string data_format, int dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, object reuse)

Functional interface for 1D convolution layer (e.g. temporal convolution). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv1D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
int strides
An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
int dilation_rate
An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv1d_dyn(object inputs, object filters, object kernel_size, ImplicitContainer<T> strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> dilation_rate, object activation, ImplicitContainer<T> use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for 1D convolution layer (e.g. temporal convolution). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv1D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
object inputs
Tensor input.
object filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
object kernel_size
An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
ImplicitContainer<T> strides
An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
ImplicitContainer<T> padding
One of `"valid"` or `"same"` (case-insensitive).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
ImplicitContainer<T> dilation_rate
An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, ImplicitContainer<T> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IGraphNodeBase inputs, int filters, int kernel_size, int strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IGraphNodeBase inputs, int filters, int kernel_size, ImplicitContainer<T> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, int strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, ValueTuple<int, object> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IGraphNodeBase inputs, int filters, int kernel_size, ValueTuple<int, object> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, int kernel_size, ImplicitContainer<T> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, int kernel_size, ValueTuple<int, object> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, IEnumerable<int> kernel_size, int strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, IEnumerable<int> kernel_size, ImplicitContainer<T> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, IEnumerable<int> kernel_size, ValueTuple<int, object> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, int kernel_size, int strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d_dyn(object inputs, object filters, object kernel_size, ImplicitContainer<T> strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> dilation_rate, object activation, ImplicitContainer<T> use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for the 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
object inputs
Tensor input.
object filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
object kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
ImplicitContainer<T> padding
One of `"valid"` or `"same"` (case-insensitive).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ImplicitContainer<T> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d_transpose(IGraphNodeBase inputs, int filters, int kernel_size, ValueTuple<int, object> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2DTranspose instead.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
object activation
Activation function. Set it to `None` to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If `None`, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d_transpose(IGraphNodeBase inputs, int filters, int kernel_size, IEnumerable<int> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2DTranspose instead.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
IEnumerable<int> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
object activation
Activation function. Set it to `None` to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If `None`, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d_transpose(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, ValueTuple<int, object> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2DTranspose instead.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
object activation
Activation function. Set it to `None` to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If `None`, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d_transpose(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, IEnumerable<int> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2DTranspose instead.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
IEnumerable<int> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
object activation
Activation function. Set it to `None` to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If `None`, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv2d_transpose_dyn(object inputs, object filters, object kernel_size, ImplicitContainer<T> strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object activation, ImplicitContainer<T> use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for transposed 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2DTranspose instead.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
Parameters
object inputs
Input tensor.
object filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
object kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> padding
one of `"valid"` or `"same"` (case-insensitive).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
object activation
Activation function. Set it to `None` to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If `None`, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d(IGraphNodeBase inputs, int filters, int kernel_size, ValueTuple<int, object, object> strides, string padding, string data_format, ValueTuple<int, object, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, object reuse)

Functional interface for the 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object, object> strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
ValueTuple<int, object, object> dilation_rate
An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d(IGraphNodeBase inputs, int filters, int kernel_size, int strides, string padding, string data_format, ValueTuple<int, object, object> dilation_rate, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, object reuse)

Functional interface for the 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
IGraphNodeBase inputs
Tensor input.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
ValueTuple<int, object, object> dilation_rate
An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d_dyn(object inputs, object filters, object kernel_size, ImplicitContainer<T> strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> dilation_rate, object activation, ImplicitContainer<T> use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for the 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well.
Parameters
object inputs
Tensor input.
object filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
object kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1.
ImplicitContainer<T> padding
One of `"valid"` or `"same"` (case-insensitive).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
ImplicitContainer<T> dilation_rate
An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
object activation
Activation function. Set it to None to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d_transpose(IGraphNodeBase inputs, int filters, int kernel_size, ValueTuple<int, object, object> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3DTranspose instead.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object, object> strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d_transpose(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, ValueTuple<int, object, object> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3DTranspose instead.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object, object> strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d_transpose(IGraphNodeBase inputs, int filters, int kernel_size, Nullable<int> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3DTranspose instead.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
Nullable<int> strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d_transpose(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, Nullable<int> strides, string padding, string data_format, object activation, bool use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for transposed 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3DTranspose instead.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
Nullable<int> strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
string padding
one of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object conv3d_transpose_dyn(object inputs, object filters, object kernel_size, ImplicitContainer<T> strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object activation, ImplicitContainer<T> use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for transposed 3D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv3DTranspose instead.
Parameters
object inputs
Input tensor.
object filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
object kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> padding
one of `"valid"` or `"same"` (case-insensitive).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
object activation
Activation function. Set it to None to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
An initializer for the convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object kernel_regularizer
Optional regularizer for the convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object kernel_constraint
Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object dense(IGraphNodeBase inputs, int units, object activation, bool use_bias, Initializer kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the densely-connected layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead.

This layer implements the operation: `outputs = activation(inputs * kernel + bias)` where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`).
Parameters
IGraphNodeBase inputs
Tensor input.
int units
Integer or Long, dimensionality of the output space.
object activation
Activation function (callable). Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
Initializer kernel_initializer
Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.compat.v1.get_variable`.
ImplicitContainer<T> bias_initializer
Initializer function for the bias.
object kernel_regularizer
Regularizer function for the weight matrix.
object bias_regularizer
Regularizer function for the bias.
object activity_regularizer
Regularizer function for the output.
object kernel_constraint
An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
An optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
String, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor the same shape as `inputs` except the last dimension is of size `units`.

object dense_dyn(object inputs, object units, object activation, ImplicitContainer<T> use_bias, object kernel_initializer, ImplicitContainer<T> bias_initializer, object kernel_regularizer, object bias_regularizer, object activity_regularizer, object kernel_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for the densely-connected layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead.

This layer implements the operation: `outputs = activation(inputs * kernel + bias)` where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`).
Parameters
object inputs
Tensor input.
object units
Integer or Long, dimensionality of the output space.
object activation
Activation function (callable). Set it to None to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object kernel_initializer
Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.compat.v1.get_variable`.
ImplicitContainer<T> bias_initializer
Initializer function for the bias.
object kernel_regularizer
Regularizer function for the weight matrix.
object bias_regularizer
Regularizer function for the bias.
object activity_regularizer
Regularizer function for the output.
object kernel_constraint
An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object bias_constraint
An optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
String, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor the same shape as `inputs` except the last dimension is of size `units`.

object dropout(IGraphNodeBase inputs, double rate, bool noise_shape, Nullable<int> seed, bool training, string name)

Applies Dropout to the input. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead.

Dropout consists in randomly setting a fraction `rate` of input units to 0 at each update during training time, which helps prevent overfitting. The units that are kept are scaled by `1 / (1 - rate)`, so that their sum is unchanged at training time and inference time.
Parameters
IGraphNodeBase inputs
Tensor input.
double rate
The dropout rate, between 0 and 1. E.g. "rate=0.1" would drop out 10% of input units.
bool noise_shape
1D tensor of type `int32` representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)`, and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=[batch_size, 1, features]`.
Nullable<int> seed
A Python integer. Used to create random seeds. See `tf.compat.v1.set_random_seed` for behavior.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (apply dropout) or in inference mode (return the input untouched).
string name
The name of the layer (string).
Returns
object
Output tensor.

object dropout(IGraphNodeBase inputs, double rate, IGraphNodeBase noise_shape, Nullable<int> seed, bool training, string name)

Applies Dropout to the input. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead.

Dropout consists in randomly setting a fraction `rate` of input units to 0 at each update during training time, which helps prevent overfitting. The units that are kept are scaled by `1 / (1 - rate)`, so that their sum is unchanged at training time and inference time.
Parameters
IGraphNodeBase inputs
Tensor input.
double rate
The dropout rate, between 0 and 1. E.g. "rate=0.1" would drop out 10% of input units.
IGraphNodeBase noise_shape
1D tensor of type `int32` representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)`, and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=[batch_size, 1, features]`.
Nullable<int> seed
A Python integer. Used to create random seeds. See `tf.compat.v1.set_random_seed` for behavior.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (apply dropout) or in inference mode (return the input untouched).
string name
The name of the layer (string).
Returns
object
Output tensor.

object dropout(IEnumerable<IGraphNodeBase> inputs, double rate, IGraphNodeBase noise_shape, Nullable<int> seed, bool training, string name)

Applies Dropout to the input. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead.

Dropout consists in randomly setting a fraction `rate` of input units to 0 at each update during training time, which helps prevent overfitting. The units that are kept are scaled by `1 / (1 - rate)`, so that their sum is unchanged at training time and inference time.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
double rate
The dropout rate, between 0 and 1. E.g. "rate=0.1" would drop out 10% of input units.
IGraphNodeBase noise_shape
1D tensor of type `int32` representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)`, and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=[batch_size, 1, features]`.
Nullable<int> seed
A Python integer. Used to create random seeds. See `tf.compat.v1.set_random_seed` for behavior.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (apply dropout) or in inference mode (return the input untouched).
string name
The name of the layer (string).
Returns
object
Output tensor.

object dropout(IEnumerable<IGraphNodeBase> inputs, double rate, bool noise_shape, Nullable<int> seed, bool training, string name)

Applies Dropout to the input. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead.

Dropout consists in randomly setting a fraction `rate` of input units to 0 at each update during training time, which helps prevent overfitting. The units that are kept are scaled by `1 / (1 - rate)`, so that their sum is unchanged at training time and inference time.
Parameters
IEnumerable<IGraphNodeBase> inputs
Tensor input.
double rate
The dropout rate, between 0 and 1. E.g. "rate=0.1" would drop out 10% of input units.
bool noise_shape
1D tensor of type `int32` representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)`, and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=[batch_size, 1, features]`.
Nullable<int> seed
A Python integer. Used to create random seeds. See `tf.compat.v1.set_random_seed` for behavior.
bool training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (apply dropout) or in inference mode (return the input untouched).
string name
The name of the layer (string).
Returns
object
Output tensor.

object dropout_dyn(object inputs, ImplicitContainer<T> rate, object noise_shape, object seed, ImplicitContainer<T> training, object name)

Applies Dropout to the input. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead.

Dropout consists in randomly setting a fraction `rate` of input units to 0 at each update during training time, which helps prevent overfitting. The units that are kept are scaled by `1 / (1 - rate)`, so that their sum is unchanged at training time and inference time.
Parameters
object inputs
Tensor input.
ImplicitContainer<T> rate
The dropout rate, between 0 and 1. E.g. "rate=0.1" would drop out 10% of input units.
object noise_shape
1D tensor of type `int32` representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)`, and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=[batch_size, 1, features]`.
object seed
A Python integer. Used to create random seeds. See `tf.compat.v1.set_random_seed` for behavior.
ImplicitContainer<T> training
Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (apply dropout) or in inference mode (return the input untouched).
object name
The name of the layer (string).
Returns
object
Output tensor.

object flatten_dyn(object inputs, object name, ImplicitContainer<T> data_format)

Flattens an input tensor while preserving the batch axis (axis 0). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.flatten instead.
Parameters
object inputs
Tensor input.
object name
The name of the layer (string).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
Returns
object
Reshaped tensor.

Examples:

``` x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32') y = flatten(x) # now `y` has shape `(None, 16)`

x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32') y = flatten(x) # now `y` has shape `(None, None)` ```

object max_pooling1d(object inputs, object pool_size, object strides, string padding, string data_format, string name)

Max Pooling layer for 1D inputs. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling1D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 3.
object pool_size
An integer or tuple/list of a single integer, representing the size of the pooling window.
object strides
An integer or tuple/list of a single integer, specifying the strides of the pooling operation.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
string name
A string, the name of the layer.
Returns
object
The output tensor, of rank 3.

object max_pooling1d_dyn(object inputs, object pool_size, object strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object name)

Max Pooling layer for 1D inputs. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling1D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 3.
object pool_size
An integer or tuple/list of a single integer, representing the size of the pooling window.
object strides
An integer or tuple/list of a single integer, specifying the strides of the pooling operation.
ImplicitContainer<T> padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
object name
A string, the name of the layer.
Returns
object
The output tensor, of rank 3.

object max_pooling2d(IGraphNodeBase inputs, int pool_size, int strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 4.
int pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> pool_size, IEnumerable<int> strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IEnumerable<IGraphNodeBase> inputs
The tensor over which to pool. Must have rank 4.
IEnumerable<int> pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
IEnumerable<int> strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> pool_size, int strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IEnumerable<IGraphNodeBase> inputs
The tensor over which to pool. Must have rank 4.
IEnumerable<int> pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d(IEnumerable<IGraphNodeBase> inputs, int pool_size, IEnumerable<int> strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IEnumerable<IGraphNodeBase> inputs
The tensor over which to pool. Must have rank 4.
int pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
IEnumerable<int> strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d(IEnumerable<IGraphNodeBase> inputs, int pool_size, int strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IEnumerable<IGraphNodeBase> inputs
The tensor over which to pool. Must have rank 4.
int pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d(IGraphNodeBase inputs, IEnumerable<int> pool_size, IEnumerable<int> strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 4.
IEnumerable<int> pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
IEnumerable<int> strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d(IGraphNodeBase inputs, IEnumerable<int> pool_size, int strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 4.
IEnumerable<int> pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d(IGraphNodeBase inputs, int pool_size, IEnumerable<int> strides, string padding, string data_format, string name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 4.
int pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
IEnumerable<int> strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling2d_dyn(object inputs, object pool_size, object strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object name)

Max pooling layer for 2D inputs (e.g. images). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead.
Parameters
object inputs
The tensor over which to pool. Must have rank 4.
object pool_size
An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
object strides
An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
ImplicitContainer<T> data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
object name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling3d(IGraphNodeBase inputs, int pool_size, int strides, string padding, string data_format, string name)

Max pooling layer for 3D inputs (e.g. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling3D instead.

volumes).
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 5.
int pool_size
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling3d(IGraphNodeBase inputs, ValueTuple<int, object, int> pool_size, ValueTuple<int, object, object> strides, string padding, string data_format, string name)

Max pooling layer for 3D inputs (e.g. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling3D instead.

volumes).
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 5.
ValueTuple<int, object, int> pool_size
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object, object> strides
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling3d(IGraphNodeBase inputs, ValueTuple<int, object, int> pool_size, int strides, string padding, string data_format, string name)

Max pooling layer for 3D inputs (e.g. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling3D instead.

volumes).
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 5.
ValueTuple<int, object, int> pool_size
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
int strides
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling3d(IGraphNodeBase inputs, int pool_size, ValueTuple<int, object, object> strides, string padding, string data_format, string name)

Max pooling layer for 3D inputs (e.g. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling3D instead.

volumes).
Parameters
IGraphNodeBase inputs
The tensor over which to pool. Must have rank 5.
int pool_size
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
ValueTuple<int, object, object> strides
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
string padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
string data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
string name
A string, the name of the layer.
Returns
object
Output tensor.

object max_pooling3d_dyn(object inputs, object pool_size, object strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object name)

Max pooling layer for 3D inputs (e.g. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling3D instead.

volumes).
Parameters
object inputs
The tensor over which to pool. Must have rank 5.
object pool_size
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.
object strides
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> padding
A string. The padding method, either 'valid' or 'same'. Case-insensitive.
ImplicitContainer<T> data_format
A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`.
object name
A string, the name of the layer.
Returns
object
Output tensor.

object separable_conv1d(IGraphNodeBase inputs, int filters, ValueTuple<int, int> kernel_size, ValueTuple<int, int> strides, string padding, string data_format, int dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 1D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv1D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
ValueTuple<int, int> kernel_size
A single integer specifying the spatial dimensions of the filters.
ValueTuple<int, int> strides
A single integer specifying the strides of the convolution. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
int dilation_rate
A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv1d(IGraphNodeBase inputs, int filters, ValueTuple<int, int> kernel_size, Nullable<int> strides, string padding, string data_format, int dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 1D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv1D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
ValueTuple<int, int> kernel_size
A single integer specifying the spatial dimensions of the filters.
Nullable<int> strides
A single integer specifying the strides of the convolution. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
int dilation_rate
A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv1d(IGraphNodeBase inputs, int filters, Nullable<int> kernel_size, Nullable<int> strides, string padding, string data_format, int dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 1D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv1D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
Nullable<int> kernel_size
A single integer specifying the spatial dimensions of the filters.
Nullable<int> strides
A single integer specifying the strides of the convolution. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
int dilation_rate
A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv1d(IGraphNodeBase inputs, int filters, Nullable<int> kernel_size, ValueTuple<int, int> strides, string padding, string data_format, int dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 1D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv1D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
Nullable<int> kernel_size
A single integer specifying the spatial dimensions of the filters.
ValueTuple<int, int> strides
A single integer specifying the strides of the convolution. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
int dilation_rate
A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv1d_dyn(object inputs, object filters, object kernel_size, ImplicitContainer<T> strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> dilation_rate, ImplicitContainer<T> depth_multiplier, object activation, ImplicitContainer<T> use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for the depthwise separable 1D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv1D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
object inputs
Input tensor.
object filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
object kernel_size
A single integer specifying the spatial dimensions of the filters.
ImplicitContainer<T> strides
A single integer specifying the strides of the convolution. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
ImplicitContainer<T> padding
One of `"valid"` or `"same"` (case-insensitive).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`.
ImplicitContainer<T> dilation_rate
A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
ImplicitContainer<T> depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv2d(IGraphNodeBase inputs, int filters, int kernel_size, Nullable<ValueTuple<int, object>> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv2D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
Nullable<ValueTuple<int, object>> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv2d(IGraphNodeBase inputs, int filters, IEnumerable<int> kernel_size, Nullable<ValueTuple<int, object>> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv2D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IGraphNodeBase inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
Nullable<ValueTuple<int, object>> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, int kernel_size, Nullable<ValueTuple<int, object>> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv2D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IEnumerable<IGraphNodeBase> inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
int kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
Nullable<ValueTuple<int, object>> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv2d(IEnumerable<IGraphNodeBase> inputs, int filters, IEnumerable<int> kernel_size, Nullable<ValueTuple<int, object>> strides, string padding, string data_format, ValueTuple<int, object> dilation_rate, int depth_multiplier, object activation, bool use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, bool trainable, string name, Nullable<bool> reuse)

Functional interface for the depthwise separable 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv2D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
IEnumerable<IGraphNodeBase> inputs
Input tensor.
int filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
IEnumerable<int> kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
Nullable<ValueTuple<int, object>> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
string padding
One of `"valid"` or `"same"` (case-insensitive).
string data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ValueTuple<int, object> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
int depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
bool use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
bool trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
string name
A string, the name of the layer.
Nullable<bool> reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

object separable_conv2d_dyn(object inputs, object filters, object kernel_size, ImplicitContainer<T> strides, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> dilation_rate, ImplicitContainer<T> depth_multiplier, object activation, ImplicitContainer<T> use_bias, object depthwise_initializer, object pointwise_initializer, ImplicitContainer<T> bias_initializer, object depthwise_regularizer, object pointwise_regularizer, object bias_regularizer, object activity_regularizer, object depthwise_constraint, object pointwise_constraint, object bias_constraint, ImplicitContainer<T> trainable, object name, object reuse)

Functional interface for the depthwise separable 2D convolution layer. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.SeparableConv2D instead.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
Parameters
object inputs
Input tensor.
object filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
object kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
ImplicitContainer<T> strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1.
ImplicitContainer<T> padding
One of `"valid"` or `"same"` (case-insensitive).
ImplicitContainer<T> data_format
A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`.
ImplicitContainer<T> dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1.
ImplicitContainer<T> depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`.
object activation
Activation function. Set it to None to maintain a linear activation.
ImplicitContainer<T> use_bias
Boolean, whether the layer uses a bias.
object depthwise_initializer
An initializer for the depthwise convolution kernel.
object pointwise_initializer
An initializer for the pointwise convolution kernel.
ImplicitContainer<T> bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
object depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
object pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
object bias_regularizer
Optional regularizer for the bias vector.
object activity_regularizer
Optional regularizer function for the output.
object depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
object pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`.
object bias_constraint
Optional projection function to be applied to the bias after being updated by an `Optimizer`.
ImplicitContainer<T> trainable
Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
object name
A string, the name of the layer.
object reuse
Boolean, whether to reuse the weights of a previous layer by the same name.
Returns
object
Output tensor.

Public properties

PythonFunctionContainer average_pooling1d_fn get;

PythonFunctionContainer average_pooling2d_fn get;

PythonFunctionContainer average_pooling3d_fn get;

PythonFunctionContainer batch_normalization_fn get;

PythonFunctionContainer conv1d_fn get;

PythonFunctionContainer conv2d_fn get;

PythonFunctionContainer conv2d_transpose_fn get;

PythonFunctionContainer conv3d_fn get;

PythonFunctionContainer conv3d_transpose_fn get;

PythonFunctionContainer dense_fn get;

PythonFunctionContainer dropout_fn get;

PythonFunctionContainer flatten_fn get;

PythonFunctionContainer max_pooling1d_fn get;

PythonFunctionContainer max_pooling2d_fn get;

PythonFunctionContainer max_pooling3d_fn get;

PythonFunctionContainer separable_conv1d_fn get;

PythonFunctionContainer separable_conv2d_fn get;