LostTech.TensorFlow : API Documentation

Type tf.profiler

Namespace tensorflow

Public static methods

object profile(object graph, object run_meta, object op_log, string cmd, IDictionary<string, object> options)

Profile model.

Tutorials and examples can be found in: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/README.md
Parameters
object graph
tf.Graph. If None and eager execution is not enabled, use default graph.
object run_meta
optional tensorflow.RunMetadata proto. It is necessary to to support run time information profiling, such as time and memory.
object op_log
tensorflow.tfprof.OpLogProto proto. User can assign "types" to graph nodes with op_log. "types" allow user to flexibly group and account profiles using options['accounted_type_regexes'].
string cmd
string. Either 'op', 'scope', 'graph' or 'code'. 'op' view organizes profile using operation type. (e.g. MatMul) 'scope' view organizes profile using graph node name scope. 'graph' view organizes profile using graph node inputs/outputs. 'code' view organizes profile using Python call stack.
IDictionary<string, object> options
A dict of options. See core/profiler/g3doc/options.md.
Returns
object
If cmd is 'scope' or 'graph', returns GraphNodeProto proto. If cmd is 'op' or 'code', returns MultiGraphNodeProto proto. Side effect: stdout/file/timeline.json depending on options['output']

object profile(object graph, object run_meta, object op_log, string cmd, ImplicitContainer<T> options)

Profile model.

Tutorials and examples can be found in: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/README.md
Parameters
object graph
tf.Graph. If None and eager execution is not enabled, use default graph.
object run_meta
optional tensorflow.RunMetadata proto. It is necessary to to support run time information profiling, such as time and memory.
object op_log
tensorflow.tfprof.OpLogProto proto. User can assign "types" to graph nodes with op_log. "types" allow user to flexibly group and account profiles using options['accounted_type_regexes'].
string cmd
string. Either 'op', 'scope', 'graph' or 'code'. 'op' view organizes profile using operation type. (e.g. MatMul) 'scope' view organizes profile using graph node name scope. 'graph' view organizes profile using graph node inputs/outputs. 'code' view organizes profile using Python call stack.
ImplicitContainer<T> options
A dict of options. See core/profiler/g3doc/options.md.
Returns
object
If cmd is 'scope' or 'graph', returns GraphNodeProto proto. If cmd is 'op' or 'code', returns MultiGraphNodeProto proto. Side effect: stdout/file/timeline.json depending on options['output']

object profile_dyn(object graph, object run_meta, object op_log, ImplicitContainer<T> cmd, ImplicitContainer<T> options)

Profile model.

Tutorials and examples can be found in: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/README.md
Parameters
object graph
tf.Graph. If None and eager execution is not enabled, use default graph.
object run_meta
optional tensorflow.RunMetadata proto. It is necessary to to support run time information profiling, such as time and memory.
object op_log
tensorflow.tfprof.OpLogProto proto. User can assign "types" to graph nodes with op_log. "types" allow user to flexibly group and account profiles using options['accounted_type_regexes'].
ImplicitContainer<T> cmd
string. Either 'op', 'scope', 'graph' or 'code'. 'op' view organizes profile using operation type. (e.g. MatMul) 'scope' view organizes profile using graph node name scope. 'graph' view organizes profile using graph node inputs/outputs. 'code' view organizes profile using Python call stack.
ImplicitContainer<T> options
A dict of options. See core/profiler/g3doc/options.md.
Returns
object
If cmd is 'scope' or 'graph', returns GraphNodeProto proto. If cmd is 'op' or 'code', returns MultiGraphNodeProto proto. Side effect: stdout/file/timeline.json depending on options['output']

Public properties

PythonFunctionContainer advise_fn get;

PythonFunctionContainer profile_fn get;

PythonFunctionContainer write_op_log_fn get;