Type tf.random
Namespace tensorflow
Methods
- categorical
- categorical
- categorical_dyn
- set_seed
- set_seed_dyn
- stateless_categorical
- stateless_categorical_dyn
- stateless_multinomial
- stateless_multinomial
- stateless_multinomial
- stateless_multinomial
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal
- stateless_normal_dyn
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal
- stateless_truncated_normal_dyn
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform
- stateless_uniform_dyn
Properties
Public static methods
Tensor categorical(IGraphNodeBase logits, int num_samples, DType dtype, object seed, string name)
Draws samples from a categorical distribution. Example:
Parameters
-
IGraphNodeBase
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
int
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
DType
dtype - integer type to use for the output. Defaults to int64.
-
object
seed - A Python integer. Used to create a random seed for the distribution. See `tf.compat.v1.set_random_seed` for behavior.
-
string
name - Optional name for the operation.
Returns
-
Tensor
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
Tensor categorical(IEnumerable<object> logits, int num_samples, DType dtype, object seed, string name)
Draws samples from a categorical distribution. Example:
Parameters
-
IEnumerable<object>
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
int
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
DType
dtype - integer type to use for the output. Defaults to int64.
-
object
seed - A Python integer. Used to create a random seed for the distribution. See `tf.compat.v1.set_random_seed` for behavior.
-
string
name - Optional name for the operation.
Returns
-
Tensor
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
object categorical_dyn(object logits, object num_samples, object dtype, object seed, object name)
Draws samples from a categorical distribution. Example:
Parameters
-
object
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
object
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
object
dtype - integer type to use for the output. Defaults to int64.
-
object
seed - A Python integer. Used to create a random seed for the distribution. See `tf.compat.v1.set_random_seed` for behavior.
-
object
name - Optional name for the operation.
Returns
-
object
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
void set_seed(object seed)
object set_seed_dyn(object seed)
Tensor stateless_categorical(object logits, object num_samples, object seed, ImplicitContainer<T> dtype, string name)
Draws deterministic pseudorandom samples from a categorical distribution. This is a stateless version of `tf.categorical`: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. Example:
Parameters
-
object
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
object
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
object
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
dtype - integer type to use for the output. Defaults to int64.
-
string
name - Optional name for the operation.
Returns
-
Tensor
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.stateless_categorical( tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])
object stateless_categorical_dyn(object logits, object num_samples, object seed, ImplicitContainer<T> dtype, object name)
Draws deterministic pseudorandom samples from a categorical distribution. This is a stateless version of `tf.categorical`: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. Example:
Parameters
-
object
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
object
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
object
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
dtype - integer type to use for the output. Defaults to int64.
-
object
name - Optional name for the operation.
Returns
-
object
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.stateless_categorical( tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])
Tensor stateless_multinomial(IGraphNodeBase logits, int num_samples, IGraphNodeBase seed, PythonClassContainer output_dtype, string name)
Draws deterministic pseudorandom samples from a multinomial distribution. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use
tf.random.stateless_categorical
instead. This is a stateless version of tf.random.categorical
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. Example:
Parameters
-
IGraphNodeBase
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
int
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
PythonClassContainer
output_dtype - integer type to use for the output. Defaults to int64.
-
string
name - Optional name for the operation.
Returns
-
Tensor
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.stateless_categorical( tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])
Tensor stateless_multinomial(IGraphNodeBase logits, int num_samples, IGraphNodeBase seed, ImplicitContainer<T> output_dtype, string name)
Draws deterministic pseudorandom samples from a multinomial distribution. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use
tf.random.stateless_categorical
instead. This is a stateless version of tf.random.categorical
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. Example:
Parameters
-
IGraphNodeBase
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
int
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
output_dtype - integer type to use for the output. Defaults to int64.
-
string
name - Optional name for the operation.
Returns
-
Tensor
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.stateless_categorical( tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])
Tensor stateless_multinomial(IEnumerable<object> logits, int num_samples, IGraphNodeBase seed, ImplicitContainer<T> output_dtype, string name)
Draws deterministic pseudorandom samples from a multinomial distribution. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use
tf.random.stateless_categorical
instead. This is a stateless version of tf.random.categorical
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. Example:
Parameters
-
IEnumerable<object>
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
int
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
output_dtype - integer type to use for the output. Defaults to int64.
-
string
name - Optional name for the operation.
Returns
-
Tensor
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.stateless_categorical( tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])
Tensor stateless_multinomial(IEnumerable<object> logits, int num_samples, IGraphNodeBase seed, PythonClassContainer output_dtype, string name)
Draws deterministic pseudorandom samples from a multinomial distribution. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use
tf.random.stateless_categorical
instead. This is a stateless version of tf.random.categorical
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. Example:
Parameters
-
IEnumerable<object>
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
int
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
PythonClassContainer
output_dtype - integer type to use for the output. Defaults to int64.
-
string
name - Optional name for the operation.
Returns
-
Tensor
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.stateless_categorical( tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])
Tensor stateless_normal(IEnumerable<int> shape, IGraphNodeBase seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(IEnumerable<int> shape, IGraphNodeBase seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(IEnumerable<int> shape, IGraphNodeBase seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(IEnumerable<int> shape, IGraphNodeBase seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IEnumerable<object> seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(IEnumerable<int> shape, IEnumerable<object> seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IEnumerable<object> seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IEnumerable<object> seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IEnumerable<object> seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IGraphNodeBase seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IGraphNodeBase seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IGraphNodeBase seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(TensorShape shape, IGraphNodeBase seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
TensorShape
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(IEnumerable<int> shape, IEnumerable<object> seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(IEnumerable<int> shape, IEnumerable<object> seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
Tensor stateless_normal(IEnumerable<int> shape, IEnumerable<object> seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random normal values.
object stateless_normal_dyn(object shape, object seed, ImplicitContainer<T> mean, ImplicitContainer<T> stddev, ImplicitContainer<T> dtype, object name)
Outputs deterministic pseudorandom values from a normal distribution. This is a stateless version of
tf.random.normal
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Parameters
-
object
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
object
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution.
-
ImplicitContainer<T>
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution.
-
ImplicitContainer<T>
dtype - The type of the output.
-
object
name - A name for the operation (optional).
Returns
-
object
- A tensor of the specified shape filled with random normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IGraphNodeBase seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IGraphNodeBase seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IGraphNodeBase seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IGraphNodeBase seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IEnumerable<object> seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IEnumerable<object> seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IEnumerable<object> seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(IEnumerable<int> shape, IEnumerable<object> seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, int mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, int mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IEnumerable<object> seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<object>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, double mean, int stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
int
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_truncated_normal(ValueTuple<int, object> shape, IGraphNodeBase seed, double mean, double stddev, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
double
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random truncated normal values.
object stateless_truncated_normal_dyn(object shape, object seed, ImplicitContainer<T> mean, ImplicitContainer<T> stddev, ImplicitContainer<T> dtype, object name)
Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of
tf.random.truncated_normal
: if run twice with
the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Parameters
-
object
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
object
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
mean - A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution.
-
ImplicitContainer<T>
stddev - A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation.
-
ImplicitContainer<T>
dtype - The type of the output.
-
object
name - A name for the operation (optional).
Returns
-
object
- A tensor of the specified shape filled with random truncated normal values.
Tensor stateless_uniform(IEnumerable<int> shape, IEnumerable<int> seed, int minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IGraphNodeBase seed, int minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IGraphNodeBase seed, int minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IGraphNodeBase seed, double minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IGraphNodeBase seed, double minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IEnumerable<int> seed, int minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(IEnumerable<int> shape, IEnumerable<int> seed, int minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IEnumerable<int> seed, int minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IEnumerable<int> seed, double minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(IEnumerable<int> shape, IGraphNodeBase seed, int minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(IEnumerable<int> shape, IGraphNodeBase seed, int minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
int
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(IEnumerable<int> shape, IGraphNodeBase seed, double minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(IEnumerable<int> shape, IGraphNodeBase seed, double minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IGraphNodeBase
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(IEnumerable<int> shape, IEnumerable<int> seed, double minval, double maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
double
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(ValueTuple<int, object> shape, IEnumerable<int> seed, double minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
ValueTuple<int, object>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
Tensor stateless_uniform(IEnumerable<int> shape, IEnumerable<int> seed, double minval, Nullable<int> maxval, ImplicitContainer<T> dtype, string name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
IEnumerable<int>
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
IEnumerable<int>
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
double
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
Nullable<int>
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
string
name - A name for the operation (optional).
Returns
-
Tensor
- A tensor of the specified shape filled with random uniform values.
object stateless_uniform_dyn(object shape, object seed, ImplicitContainer<T> minval, object maxval, ImplicitContainer<T> dtype, object name)
Outputs deterministic pseudorandom values from a uniform distribution. This is a stateless version of
tf.random.uniform
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly. In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Parameters
-
object
shape - A 1-D integer Tensor or Python array. The shape of the output tensor.
-
object
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
minval - A 0-D Tensor or Python value of type `dtype`. The lower bound on the range of random values to generate. Defaults to 0.
-
object
maxval - A 0-D Tensor or Python value of type `dtype`. The upper bound on the range of random values to generate. Defaults to 1 if `dtype` is floating point.
-
ImplicitContainer<T>
dtype - The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`.
-
object
name - A name for the operation (optional).
Returns
-
object
- A tensor of the specified shape filled with random uniform values.