Type tf.random.experimental
Namespace tensorflow
Methods
- create_rng_state
- create_rng_state_dyn
- get_global_generator
- get_global_generator_dyn
- set_global_generator
- set_global_generator_dyn
Properties
Public static methods
object create_rng_state(Nullable<int> seed, Nullable<int> algorithm)
Creates a RNG state.
Parameters
-
Nullable<int>
seed - an integer or 1-D tensor.
-
Nullable<int>
algorithm - an integer representing the RNG algorithm.
Returns
-
object
- a 1-D tensor whose size depends on the algorithm.
object create_rng_state_dyn(object seed, object algorithm)
Creates a RNG state.
Parameters
-
object
seed - an integer or 1-D tensor.
-
object
algorithm - an integer representing the RNG algorithm.
Returns
-
object
- a 1-D tensor whose size depends on the algorithm.
Generator get_global_generator()
object get_global_generator_dyn()
void set_global_generator(Generator generator)
Replaces the global generator with another `Generator` object. This function creates a new Generator object (and the Variable object within),
which does not work well with tf.function because (1) tf.function puts
restrictions on Variable creation thus reset_global_generator can't be freely
used inside tf.function; (2) redirecting a global variable to
a new object is problematic with tf.function because the old object may be
captured by a 'tf.function'ed function and still be used by it.
A 'tf.function'ed function only keeps weak references to variables,
so deleting a variable and then calling that function again may raise an
error, as demonstrated by
random_test.py/RandomTest.testResetGlobalGeneratorBadWithDefun.
Parameters
-
Generator
generator - the new `Generator` object.
object set_global_generator_dyn(object generator)
Replaces the global generator with another `Generator` object. This function creates a new Generator object (and the Variable object within),
which does not work well with tf.function because (1) tf.function puts
restrictions on Variable creation thus reset_global_generator can't be freely
used inside tf.function; (2) redirecting a global variable to
a new object is problematic with tf.function because the old object may be
captured by a 'tf.function'ed function and still be used by it.
A 'tf.function'ed function only keeps weak references to variables,
so deleting a variable and then calling that function again may raise an
error, as demonstrated by
random_test.py/RandomTest.testResetGlobalGeneratorBadWithDefun.
Parameters
-
object
generator - the new `Generator` object.