LostTech.TensorFlow : API Documentation

Type tf.quantization

Namespace tensorflow

Public static methods

Tensor quantize_and_dequantize(IGraphNodeBase input, object input_min, object input_max, bool signed_input, int num_bits, bool range_given, string round_mode, string name, bool narrow_range)

Quantizes then dequantizes a tensor.
Parameters
IGraphNodeBase input
A `Tensor` to quantize and dequantize.
object input_min
If range_given=True, the minimum input value that needs to be represented in the quantized representation.
object input_max
If range_given=True, the maximum input value that needs to be represented in the quantized representation.
bool signed_input
True if the quantization is signed or unsigned.
int num_bits
The bitwidth of the quantization.
bool range_given
If true use `input_min` and `input_max` for the range of the input, otherwise determine min and max from the input `Tensor`.
string round_mode
Rounding mode when rounding from float values to quantized ones.
string name
Optional name for the operation.
bool narrow_range
If true, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater. i.e. for 8 bit quantization, the minimum value is -127 instead of -128.
Returns
Tensor
A `Tensor`. Each element is the result of quantizing and dequantizing the corresponding element of `input`.

object quantize_and_dequantize_dyn(object input, object input_min, object input_max, ImplicitContainer<T> signed_input, ImplicitContainer<T> num_bits, ImplicitContainer<T> range_given, ImplicitContainer<T> round_mode, object name, ImplicitContainer<T> narrow_range)

Quantizes then dequantizes a tensor.
Parameters
object input
A `Tensor` to quantize and dequantize.
object input_min
If range_given=True, the minimum input value that needs to be represented in the quantized representation.
object input_max
If range_given=True, the maximum input value that needs to be represented in the quantized representation.
ImplicitContainer<T> signed_input
True if the quantization is signed or unsigned.
ImplicitContainer<T> num_bits
The bitwidth of the quantization.
ImplicitContainer<T> range_given
If true use `input_min` and `input_max` for the range of the input, otherwise determine min and max from the input `Tensor`.
ImplicitContainer<T> round_mode
Rounding mode when rounding from float values to quantized ones.
object name
Optional name for the operation.
ImplicitContainer<T> narrow_range
If true, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater. i.e. for 8 bit quantization, the minimum value is -127 instead of -128.
Returns
object
A `Tensor`. Each element is the result of quantizing and dequantizing the corresponding element of `input`.

Public properties

PythonFunctionContainer quantize_and_dequantize_fn get;