Type tf.keras.losses
Namespace tensorflow
Methods
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy
- binary_crossentropy_dyn
- categorical_crossentropy
- categorical_crossentropy
- categorical_crossentropy
- categorical_crossentropy
- categorical_crossentropy
- categorical_hinge
- categorical_hinge_dyn
- cosine
- cosine
- cosine
- cosine
- cosine_dyn
- hinge
- hinge_dyn
- KLD
- KLD_dyn
- logcosh
- logcosh
- logcosh
- logcosh_dyn
- MAE
- MAE
- MAE_dyn
- MAPE
- MAPE_dyn
- MSE
- MSE
- MSE
- MSE
- MSE
- MSE
- MSE_dyn
- MSLE
- MSLE_dyn
- poisson
- poisson_dyn
- serialize
- squared_hinge
- squared_hinge_dyn
Properties
Public static methods
Tensor binary_crossentropy(IGraphNodeBase y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(IEnumerable<object> y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(IEnumerable<object> y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(ValueTuple<IEnumerable<object>, object> y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(ValueTuple<IEnumerable<object>, object> y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(ValueTuple<IEnumerable<object>, object> y_true, IGraphNodeBase y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(IGraphNodeBase y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(IEnumerable<object> y_true, IGraphNodeBase y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(IGraphNodeBase y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(object y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(object y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(ValueTuple<IEnumerable<object>, object> y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(IGraphNodeBase y_true, IGraphNodeBase y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(IndexedSlices y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(IndexedSlices y_true, IEnumerable<IGraphNodeBase> y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(object y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(IEnumerable<object> y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(IndexedSlices y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Tensor binary_crossentropy(object y_true, IGraphNodeBase y_pred, bool from_logits, int label_smoothing)
Tensor binary_crossentropy(IndexedSlices y_true, IGraphNodeBase y_pred, bool from_logits, int label_smoothing)
object binary_crossentropy_dyn(object y_true, object y_pred, ImplicitContainer<T> from_logits, ImplicitContainer<T> label_smoothing)
Tensor categorical_crossentropy(object y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Computes the categorical crossentropy loss.
Parameters
-
object
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
-
bool
from_logits - Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution.
-
IGraphNodeBase
label_smoothing - Float in [0, 1]. If > `0` then smooth the labels.
Returns
-
Tensor
- Categorical crossentropy loss value.
Tensor categorical_crossentropy(IGraphNodeBase y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Computes the categorical crossentropy loss.
Parameters
-
IGraphNodeBase
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
-
bool
from_logits - Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution.
-
IGraphNodeBase
label_smoothing - Float in [0, 1]. If > `0` then smooth the labels.
Returns
-
Tensor
- Categorical crossentropy loss value.
Tensor categorical_crossentropy(IndexedSlices y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Computes the categorical crossentropy loss.
Parameters
-
IndexedSlices
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
-
bool
from_logits - Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution.
-
IGraphNodeBase
label_smoothing - Float in [0, 1]. If > `0` then smooth the labels.
Returns
-
Tensor
- Categorical crossentropy loss value.
Tensor categorical_crossentropy(ValueTuple<IEnumerable<object>, object> y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Computes the categorical crossentropy loss.
Parameters
-
ValueTuple<IEnumerable<object>, object>
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
-
bool
from_logits - Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution.
-
IGraphNodeBase
label_smoothing - Float in [0, 1]. If > `0` then smooth the labels.
Returns
-
Tensor
- Categorical crossentropy loss value.
Tensor categorical_crossentropy(IEnumerable<object> y_true, IGraphNodeBase y_pred, bool from_logits, IGraphNodeBase label_smoothing)
Computes the categorical crossentropy loss.
Parameters
-
IEnumerable<object>
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
-
bool
from_logits - Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution.
-
IGraphNodeBase
label_smoothing - Float in [0, 1]. If > `0` then smooth the labels.
Returns
-
Tensor
- Categorical crossentropy loss value.
object categorical_hinge(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Computes the categorical hinge loss between `y_true` and `y_pred`.
Parameters
-
IGraphNodeBase
y_true - The ground truth values. `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided they will be converted to -1 or 1.
-
IGraphNodeBase
y_pred - The predicted values.
Returns
-
object
- A tensor.
object categorical_hinge_dyn(object y_true, object y_pred)
Computes the categorical hinge loss between `y_true` and `y_pred`.
Parameters
-
object
y_true - The ground truth values. `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided they will be converted to -1 or 1.
-
object
y_pred - The predicted values.
Returns
-
object
- A tensor.
Tensor cosine(IEnumerable<double> y_true, IGraphNodeBase y_pred, int axis)
Computes the cosine similarity between labels and predictions.
Tensor cosine(IEnumerable<double> y_true, IEnumerable<double> y_pred, int axis)
Computes the cosine similarity between labels and predictions.
Tensor cosine(IGraphNodeBase y_true, IGraphNodeBase y_pred, int axis)
Computes the cosine similarity between labels and predictions.
Tensor cosine(IGraphNodeBase y_true, IEnumerable<double> y_pred, int axis)
Computes the cosine similarity between labels and predictions.
object cosine_dyn(object y_true, object y_pred, ImplicitContainer<T> axis)
Computes the cosine similarity between labels and predictions.
Tensor hinge(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Computes the hinge loss between `y_true` and `y_pred`.
Parameters
-
IGraphNodeBase
y_true - The ground truth values. `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided they will be converted to -1 or 1.
-
IGraphNodeBase
y_pred - The predicted values.
Returns
-
Tensor
- Tensor with one scalar loss entry per sample.
object hinge_dyn(object y_true, object y_pred)
Computes the hinge loss between `y_true` and `y_pred`.
Parameters
-
object
y_true - The ground truth values. `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided they will be converted to -1 or 1.
-
object
y_pred - The predicted values.
Returns
-
object
- Tensor with one scalar loss entry per sample.
Tensor KLD(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Computes Kullback-Leibler divergence loss between `y_true` and `y_pred`. `loss = y_true * log(y_true / y_pred)` See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence Usage:
Parameters
-
IGraphNodeBase
y_true - Tensor of true targets.
-
IGraphNodeBase
y_pred - Tensor of predicted targets.
Returns
-
Tensor
- A `Tensor` with loss.
Show Example
loss = tf.keras.losses.KLD([.4,.9,.2], [.5,.8,.12]) print('Loss: ', loss.numpy()) # Loss: 0.11891246
object KLD_dyn(object y_true, object y_pred)
Computes Kullback-Leibler divergence loss between `y_true` and `y_pred`. `loss = y_true * log(y_true / y_pred)` See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence Usage:
Parameters
-
object
y_true - Tensor of true targets.
-
object
y_pred - Tensor of predicted targets.
Returns
-
object
- A `Tensor` with loss.
Show Example
loss = tf.keras.losses.KLD([.4,.9,.2], [.5,.8,.12]) print('Loss: ', loss.numpy()) # Loss: 0.11891246
Tensor logcosh(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.
Parameters
-
IGraphNodeBase
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
Returns
-
Tensor
- Tensor with one scalar loss entry per sample.
Tensor logcosh(IndexedSlices y_true, IGraphNodeBase y_pred)
Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.
Parameters
-
IndexedSlices
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
Returns
-
Tensor
- Tensor with one scalar loss entry per sample.
Tensor logcosh(ValueTuple<PythonClassContainer, PythonClassContainer> y_true, IGraphNodeBase y_pred)
Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
y_true - tensor of true targets.
-
IGraphNodeBase
y_pred - tensor of predicted targets.
Returns
-
Tensor
- Tensor with one scalar loss entry per sample.
object logcosh_dyn(object y_true, object y_pred)
Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.
Parameters
-
object
y_true - tensor of true targets.
-
object
y_pred - tensor of predicted targets.
Returns
-
object
- Tensor with one scalar loss entry per sample.
Tensor MAE(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Tensor MAE(IGraphNodeBase y_true, IEnumerable<IGraphNodeBase> y_pred)
object MAE_dyn(object y_true, object y_pred)
object MAPE(IGraphNodeBase y_true, IGraphNodeBase y_pred)
object MAPE_dyn(object y_true, object y_pred)
Tensor MSE(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Tensor MSE(IGraphNodeBase y_true, IEnumerable<IGraphNodeBase> y_pred)
Tensor MSE(IEnumerable<IGraphNodeBase> y_true, IGraphNodeBase y_pred)
Tensor MSE(IEnumerable<IGraphNodeBase> y_true, IEnumerable<IGraphNodeBase> y_pred)
Tensor MSE(ndarray y_true, IGraphNodeBase y_pred)
object MSE_dyn(object y_true, object y_pred)
Tensor MSLE(IGraphNodeBase y_true, IGraphNodeBase y_pred)
object MSLE_dyn(object y_true, object y_pred)
Tensor poisson(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Computes the Poisson loss between y_true and y_pred. The Poisson loss is the mean of the elements of the `Tensor`
`y_pred - y_true * log(y_pred)`. Usage:
Parameters
-
IGraphNodeBase
y_true - Tensor of true targets.
-
IGraphNodeBase
y_pred - Tensor of predicted targets.
Returns
-
Tensor
- A `Tensor` with the mean Poisson loss.
Show Example
loss = tf.keras.losses.poisson([1.4, 9.3, 2.2], [4.3, 8.2, 12.2]) print('Loss: ', loss.numpy()) # Loss: -0.8045559
object poisson_dyn(object y_true, object y_pred)
Computes the Poisson loss between y_true and y_pred. The Poisson loss is the mean of the elements of the `Tensor`
`y_pred - y_true * log(y_pred)`. Usage:
Parameters
-
object
y_true - Tensor of true targets.
-
object
y_pred - Tensor of predicted targets.
Returns
-
object
- A `Tensor` with the mean Poisson loss.
Show Example
loss = tf.keras.losses.poisson([1.4, 9.3, 2.2], [4.3, 8.2, 12.2]) print('Loss: ', loss.numpy()) # Loss: -0.8045559
object serialize(IGraphNodeBase loss)
Tensor squared_hinge(IGraphNodeBase y_true, IGraphNodeBase y_pred)
Computes the squared hinge loss between `y_true` and `y_pred`.
Parameters
-
IGraphNodeBase
y_true - The ground truth values. `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
-
IGraphNodeBase
y_pred - The predicted values.
Returns
-
Tensor
- Tensor with one scalar loss entry per sample.
object squared_hinge_dyn(object y_true, object y_pred)
Computes the squared hinge loss between `y_true` and `y_pred`.
Parameters
-
object
y_true - The ground truth values. `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
-
object
y_pred - The predicted values.
Returns
-
object
- Tensor with one scalar loss entry per sample.