LostTech.TensorFlow : API Documentation

Type tf.ragged

Namespace tensorflow

Methods

Properties

Public static methods

RaggedTensor boolean_mask(IGraphNodeBase data, object mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IGraphNodeBase data
A potentially ragged tensor.
object mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(object data, RaggedTensor mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
object data
A potentially ragged tensor.
RaggedTensor mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(object data, DType mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
object data
A potentially ragged tensor.
DType mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(object data, IEnumerable<object> mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
object data
A potentially ragged tensor.
IEnumerable<object> mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IGraphNodeBase data, IGraphNodeBase mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IGraphNodeBase data
A potentially ragged tensor.
IGraphNodeBase mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IGraphNodeBase data, RaggedTensor mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IGraphNodeBase data
A potentially ragged tensor.
RaggedTensor mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IGraphNodeBase data, DType mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IGraphNodeBase data
A potentially ragged tensor.
DType mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IGraphNodeBase data, IEnumerable<object> mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IGraphNodeBase data
A potentially ragged tensor.
IEnumerable<object> mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(RaggedTensor data, object mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
RaggedTensor data
A potentially ragged tensor.
object mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(RaggedTensor data, IGraphNodeBase mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
RaggedTensor data
A potentially ragged tensor.
IGraphNodeBase mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(RaggedTensor data, RaggedTensor mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
RaggedTensor data
A potentially ragged tensor.
RaggedTensor mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(RaggedTensor data, DType mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
RaggedTensor data
A potentially ragged tensor.
DType mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(object data, IGraphNodeBase mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
object data
A potentially ragged tensor.
IGraphNodeBase mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(RaggedTensor data, IEnumerable<object> mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
RaggedTensor data
A potentially ragged tensor.
IEnumerable<object> mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(DType data, IGraphNodeBase mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
DType data
A potentially ragged tensor.
IGraphNodeBase mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(DType data, RaggedTensor mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
DType data
A potentially ragged tensor.
RaggedTensor mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(DType data, DType mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
DType data
A potentially ragged tensor.
DType mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(DType data, IEnumerable<object> mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
DType data
A potentially ragged tensor.
IEnumerable<object> mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IEnumerable<object> data, object mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IEnumerable<object> data
A potentially ragged tensor.
object mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IEnumerable<object> data, IGraphNodeBase mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IEnumerable<object> data
A potentially ragged tensor.
IGraphNodeBase mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IEnumerable<object> data, RaggedTensor mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IEnumerable<object> data
A potentially ragged tensor.
RaggedTensor mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IEnumerable<object> data, DType mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IEnumerable<object> data
A potentially ragged tensor.
DType mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(IEnumerable<object> data, IEnumerable<object> mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
IEnumerable<object> data
A potentially ragged tensor.
IEnumerable<object> mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(DType data, object mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
DType data
A potentially ragged tensor.
object mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

RaggedTensor boolean_mask(object data, object mask, string name)

Applies a boolean mask to `data` without flattening the mask dimensions.

Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]`

Where `j` is the `i`th `True` entry of `mask[a1...aA]`.

Note that `output` preserves the mask dimensions `a1...aA`; this differs from tf.boolean_mask, which flattens those dimensions.
Parameters
object data
A potentially ragged tensor.
object mask
A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`.

* `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`.

object constant(int pylist, PythonClassContainer dtype, Nullable<int> ragged_rank, Nullable<ValueTuple<int>> inner_shape, string name, ImplicitContainer<T> row_splits_dtype)

Constructs a constant RaggedTensor from a nested Python list.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensor` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
int pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list`, `tuple` or `np.ndarray` must be a scalar value compatible with `dtype`.
PythonClassContainer dtype
The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensor`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
Nullable<ValueTuple<int>> inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensor`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string name
A name prefix for the returned tensor (optional).
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensor`'s row_splits. One of tf.int32 or tf.int64.
Returns
object
A potentially ragged tensor with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant([[1, 2], [3], [4, 5, 6]]).eval()
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

object constant(ndarray pylist, PythonClassContainer dtype, Nullable<int> ragged_rank, Nullable<ValueTuple<int>> inner_shape, string name, ImplicitContainer<T> row_splits_dtype)

Constructs a constant RaggedTensor from a nested Python list.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensor` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
ndarray pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list`, `tuple` or `np.ndarray` must be a scalar value compatible with `dtype`.
PythonClassContainer dtype
The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensor`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
Nullable<ValueTuple<int>> inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensor`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string name
A name prefix for the returned tensor (optional).
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensor`'s row_splits. One of tf.int32 or tf.int64.
Returns
object
A potentially ragged tensor with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant([[1, 2], [3], [4, 5, 6]]).eval()
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

object constant(IEnumerable<object> pylist, DType dtype, Nullable<int> ragged_rank, Nullable<ValueTuple<int>> inner_shape, string name, ImplicitContainer<T> row_splits_dtype)

Constructs a constant RaggedTensor from a nested Python list.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensor` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list`, `tuple` or `np.ndarray` must be a scalar value compatible with `dtype`.
DType dtype
The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensor`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
Nullable<ValueTuple<int>> inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensor`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string name
A name prefix for the returned tensor (optional).
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensor`'s row_splits. One of tf.int32 or tf.int64.
Returns
object
A potentially ragged tensor with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant([[1, 2], [3], [4, 5, 6]]).eval()
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

object constant(ndarray pylist, DType dtype, Nullable<int> ragged_rank, Nullable<ValueTuple<int>> inner_shape, string name, ImplicitContainer<T> row_splits_dtype)

Constructs a constant RaggedTensor from a nested Python list.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensor` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
ndarray pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list`, `tuple` or `np.ndarray` must be a scalar value compatible with `dtype`.
DType dtype
The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensor`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
Nullable<ValueTuple<int>> inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensor`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string name
A name prefix for the returned tensor (optional).
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensor`'s row_splits. One of tf.int32 or tf.int64.
Returns
object
A potentially ragged tensor with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant([[1, 2], [3], [4, 5, 6]]).eval()
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

object constant(IEnumerable<object> pylist, PythonClassContainer dtype, Nullable<int> ragged_rank, Nullable<ValueTuple<int>> inner_shape, string name, ImplicitContainer<T> row_splits_dtype)

Constructs a constant RaggedTensor from a nested Python list.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensor` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list`, `tuple` or `np.ndarray` must be a scalar value compatible with `dtype`.
PythonClassContainer dtype
The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensor`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
Nullable<ValueTuple<int>> inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensor`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string name
A name prefix for the returned tensor (optional).
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensor`'s row_splits. One of tf.int32 or tf.int64.
Returns
object
A potentially ragged tensor with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant([[1, 2], [3], [4, 5, 6]]).eval()
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

object constant(int pylist, DType dtype, Nullable<int> ragged_rank, Nullable<ValueTuple<int>> inner_shape, string name, ImplicitContainer<T> row_splits_dtype)

Constructs a constant RaggedTensor from a nested Python list.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensor` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
int pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list`, `tuple` or `np.ndarray` must be a scalar value compatible with `dtype`.
DType dtype
The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensor`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
Nullable<ValueTuple<int>> inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensor`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string name
A name prefix for the returned tensor (optional).
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensor`'s row_splits. One of tf.int32 or tf.int64.
Returns
object
A potentially ragged tensor with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant([[1, 2], [3], [4, 5, 6]]).eval()
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

object constant_dyn(object pylist, object dtype, object ragged_rank, object inner_shape, object name, ImplicitContainer<T> row_splits_dtype)

Constructs a constant RaggedTensor from a nested Python list.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensor` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
object pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list`, `tuple` or `np.ndarray` must be a scalar value compatible with `dtype`.
object dtype
The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
object ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensor`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensor`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
object name
A name prefix for the returned tensor (optional).
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensor`'s row_splits. One of tf.int32 or tf.int64.
Returns
object
A potentially ragged tensor with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant([[1, 2], [3], [4, 5, 6]]).eval()
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, PythonClassContainer dtype, Nullable<int> ragged_rank, object inner_shape, string row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
PythonClassContainer dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, DType dtype, Nullable<int> ragged_rank, object inner_shape, PythonClassContainer row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
DType dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
PythonClassContainer row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, dtype dtype, Nullable<int> ragged_rank, object inner_shape, PythonClassContainer row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
dtype dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
PythonClassContainer row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, DType dtype, Nullable<int> ragged_rank, object inner_shape, string row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
DType dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, PythonClassContainer dtype, Nullable<int> ragged_rank, object inner_shape, dtype row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
PythonClassContainer dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
dtype row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, dtype dtype, Nullable<int> ragged_rank, object inner_shape, dtype row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
dtype dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
dtype row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, PythonClassContainer dtype, Nullable<int> ragged_rank, object inner_shape, PythonClassContainer row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
PythonClassContainer dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
PythonClassContainer row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, DType dtype, Nullable<int> ragged_rank, object inner_shape, dtype row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
DType dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
dtype row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, Byte[] dtype, Nullable<int> ragged_rank, object inner_shape, string row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
Byte[] dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, Byte[] dtype, Nullable<int> ragged_rank, object inner_shape, PythonClassContainer row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
Byte[] dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
PythonClassContainer row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, Byte[] dtype, Nullable<int> ragged_rank, object inner_shape, dtype row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
Byte[] dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
dtype row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

IList<object> constant_value(IEnumerable<object> pylist, dtype dtype, Nullable<int> ragged_rank, object inner_shape, string row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
IEnumerable<object> pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
dtype dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
Nullable<int> ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
string row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
IList<object>
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

object constant_value_dyn(object pylist, object dtype, object ragged_rank, object inner_shape, ImplicitContainer<T> row_splits_dtype)

Constructs a RaggedTensorValue from a nested Python list.

Warning: This function returns a `RaggedTensorValue`, not a `RaggedTensor`. If you wish to construct a constant `RaggedTensor`, use [`ragged.constant(...)`](constant.md) instead.

Example: All scalar values in `pylist` must have the same nesting depth `K`, and the returned `RaggedTensorValue` will have rank `K`. If `pylist` contains no scalar values, then `K` is one greater than the maximum depth of empty lists in `pylist`. All scalar values in `pylist` must be compatible with `dtype`.
Parameters
object pylist
A nested `list`, `tuple` or `np.ndarray`. Any nested element that is not a `list` or `tuple` must be a scalar value compatible with `dtype`.
object dtype
`numpy.dtype`. The type of elements for the returned `RaggedTensor`. If not specified, then a default is chosen based on the scalar values in `pylist`.
object ragged_rank
An integer specifying the ragged rank of the returned `RaggedTensorValue`. Must be nonnegative and less than `K`. Defaults to `max(0, K - 1)` if `inner_shape` is not specified. Defaults to `max(0, K - 1 - len(inner_shape))` if `inner_shape` is specified.
object inner_shape
A tuple of integers specifying the shape for individual inner values in the returned `RaggedTensorValue`. Defaults to `()` if `ragged_rank` is not specified. If `ragged_rank` is specified, then a default is chosen based on the contents of `pylist`.
ImplicitContainer<T> row_splits_dtype
data type for the constructed `RaggedTensorValue`'s row_splits. One of `numpy.int32` or `numpy.int64`.
Returns
object
A `tf.RaggedTensorValue` or `numpy.array` with rank `K` and the specified `ragged_rank`, containing the values from `pylist`.
Show Example
>>> ragged.constant_value([[1, 2], [3], [4, 5, 6]])
            RaggedTensorValue(values=[1, 2, 3, 4, 5, 6], splits=[0, 2, 3, 6]) 

RaggedTensor map_flat_values(PythonFunctionContainer op, Object[] args)

Applies `op` to the values of one or more RaggedTensors.

Replaces any `RaggedTensor` in `args` or `kwargs` with its `flat_values` tensor, and then calls `op`. Returns a `RaggedTensor` that is constructed from the input `RaggedTensor`s' `nested_row_splits` and the value returned by the `op`.

If the input arguments contain multiple `RaggedTensor`s, then they must have identical `nested_row_splits`.

Examples:
Parameters
PythonFunctionContainer op
The operation that should be applied to the RaggedTensor `flat_values`. `op` is typically an element-wise operation (such as math_ops.add), but any operation that preserves the size of the outermost dimension can be used. I.e., `shape[0]` of the value returned by `op` must match `shape[0]` of the `RaggedTensor`s' `flat_values` tensors.
Object[] args
Arguments for `op`.
Returns
RaggedTensor
A `RaggedTensor` whose `ragged_rank` matches the `ragged_rank` of all input `RaggedTensor`s.
Show Example
>>> rt = ragged.constant([[1, 2, 3], [], [4, 5], [6]])
            >>> ragged.map_flat_values(tf.ones_like, rt).eval().tolist()
            [[1, 1, 1], [], [1, 1], [1]]
            >>> ragged.map_flat_values(tf.multiply, rt, rt).eval().tolist()
            [[1, 4, 9], [], [16, 25], [36]]
            >>> ragged.map_flat_values(tf.add, rt, 5).eval().tolist()
            [[6, 7, 8], [], [9, 10], [11]] 

RaggedTensor map_flat_values(PythonFunctionContainer op, IDictionary<string, object> kwargs, Object[] args)

Applies `op` to the values of one or more RaggedTensors.

Replaces any `RaggedTensor` in `args` or `kwargs` with its `flat_values` tensor, and then calls `op`. Returns a `RaggedTensor` that is constructed from the input `RaggedTensor`s' `nested_row_splits` and the value returned by the `op`.

If the input arguments contain multiple `RaggedTensor`s, then they must have identical `nested_row_splits`.

Examples:
Parameters
PythonFunctionContainer op
The operation that should be applied to the RaggedTensor `flat_values`. `op` is typically an element-wise operation (such as math_ops.add), but any operation that preserves the size of the outermost dimension can be used. I.e., `shape[0]` of the value returned by `op` must match `shape[0]` of the `RaggedTensor`s' `flat_values` tensors.
IDictionary<string, object> kwargs
Keyword arguments for `op`.
Object[] args
Arguments for `op`.
Returns
RaggedTensor
A `RaggedTensor` whose `ragged_rank` matches the `ragged_rank` of all input `RaggedTensor`s.
Show Example
>>> rt = ragged.constant([[1, 2, 3], [], [4, 5], [6]])
            >>> ragged.map_flat_values(tf.ones_like, rt).eval().tolist()
            [[1, 1, 1], [], [1, 1], [1]]
            >>> ragged.map_flat_values(tf.multiply, rt, rt).eval().tolist()
            [[1, 4, 9], [], [16, 25], [36]]
            >>> ragged.map_flat_values(tf.add, rt, 5).eval().tolist()
            [[6, 7, 8], [], [9, 10], [11]] 

object map_flat_values_dyn(object op, IDictionary<string, object> kwargs, Object[] args)

Applies `op` to the values of one or more RaggedTensors.

Replaces any `RaggedTensor` in `args` or `kwargs` with its `flat_values` tensor, and then calls `op`. Returns a `RaggedTensor` that is constructed from the input `RaggedTensor`s' `nested_row_splits` and the value returned by the `op`.

If the input arguments contain multiple `RaggedTensor`s, then they must have identical `nested_row_splits`.

Examples:
Parameters
object op
The operation that should be applied to the RaggedTensor `flat_values`. `op` is typically an element-wise operation (such as math_ops.add), but any operation that preserves the size of the outermost dimension can be used. I.e., `shape[0]` of the value returned by `op` must match `shape[0]` of the `RaggedTensor`s' `flat_values` tensors.
IDictionary<string, object> kwargs
Keyword arguments for `op`.
Object[] args
Arguments for `op`.
Returns
object
A `RaggedTensor` whose `ragged_rank` matches the `ragged_rank` of all input `RaggedTensor`s.
Show Example
>>> rt = ragged.constant([[1, 2, 3], [], [4, 5], [6]])
            >>> ragged.map_flat_values(tf.ones_like, rt).eval().tolist()
            [[1, 1, 1], [], [1, 1], [1]]
            >>> ragged.map_flat_values(tf.multiply, rt, rt).eval().tolist()
            [[1, 4, 9], [], [16, 25], [36]]
            >>> ragged.map_flat_values(tf.add, rt, 5).eval().tolist()
            [[6, 7, 8], [], [9, 10], [11]] 

object map_flat_values_dyn(object op, Object[] args)

Applies `op` to the values of one or more RaggedTensors.

Replaces any `RaggedTensor` in `args` or `kwargs` with its `flat_values` tensor, and then calls `op`. Returns a `RaggedTensor` that is constructed from the input `RaggedTensor`s' `nested_row_splits` and the value returned by the `op`.

If the input arguments contain multiple `RaggedTensor`s, then they must have identical `nested_row_splits`.

Examples:
Parameters
object op
The operation that should be applied to the RaggedTensor `flat_values`. `op` is typically an element-wise operation (such as math_ops.add), but any operation that preserves the size of the outermost dimension can be used. I.e., `shape[0]` of the value returned by `op` must match `shape[0]` of the `RaggedTensor`s' `flat_values` tensors.
Object[] args
Arguments for `op`.
Returns
object
A `RaggedTensor` whose `ragged_rank` matches the `ragged_rank` of all input `RaggedTensor`s.
Show Example
>>> rt = ragged.constant([[1, 2, 3], [], [4, 5], [6]])
            >>> ragged.map_flat_values(tf.ones_like, rt).eval().tolist()
            [[1, 1, 1], [], [1, 1], [1]]
            >>> ragged.map_flat_values(tf.multiply, rt, rt).eval().tolist()
            [[1, 4, 9], [], [16, 25], [36]]
            >>> ragged.map_flat_values(tf.add, rt, 5).eval().tolist()
            [[6, 7, 8], [], [9, 10], [11]] 

object placeholder(DType dtype, int ragged_rank, IEnumerable<object> value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
DType dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
IEnumerable<object> value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(PythonClassContainer dtype, int ragged_rank, object value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
PythonClassContainer dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
object value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(PythonClassContainer dtype, int ragged_rank, ValueTuple<int, object, int> value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
PythonClassContainer dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
ValueTuple<int, object, int> value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(PythonClassContainer dtype, int ragged_rank, IEnumerable<object> value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
PythonClassContainer dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
IEnumerable<object> value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(DType dtype, int ragged_rank, object value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
DType dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
object value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(DType dtype, int ragged_rank, ValueTuple<int, object, int> value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
DType dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
ValueTuple<int, object, int> value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(dtype dtype, int ragged_rank, IEnumerable<object> value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
dtype dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
IEnumerable<object> value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(dtype dtype, int ragged_rank, ValueTuple<int, object, int> value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
dtype dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
ValueTuple<int, object, int> value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder(dtype dtype, int ragged_rank, object value_shape, string name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
dtype dtype
The data type for the `RaggedTensor`.
int ragged_rank
The ragged rank for the `RaggedTensor`
object value_shape
The shape for individual flat values in the `RaggedTensor`.
string name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

object placeholder_dyn(object dtype, object ragged_rank, object value_shape, object name)

Creates a placeholder for a tf.RaggedTensor that will always be fed.

**Important**: This ragged tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

@compatibility{eager} Placeholders are not compatible with eager execution.
Parameters
object dtype
The data type for the `RaggedTensor`.
object ragged_rank
The ragged rank for the `RaggedTensor`
object value_shape
The shape for individual flat values in the `RaggedTensor`.
object name
A name for the operation (optional).
Returns
object
A `RaggedTensor` that may be used as a handle for feeding a value, but not evaluated directly.

RaggedTensor range(IEnumerable<int> starts, ValueTuple<IEnumerable<object>, object> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IEnumerable<int> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
ValueTuple<IEnumerable<object>, object> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(IEnumerable<int> starts, int limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IEnumerable<int> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
int limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(IEnumerable<int> starts, IGraphNodeBase limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IEnumerable<int> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IGraphNodeBase limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(ValueTuple<IEnumerable<object>, object> starts, IEnumerable<int> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
ValueTuple<IEnumerable<object>, object> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IEnumerable<int> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(int starts, int limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
int starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
int limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(int starts, ValueTuple<IEnumerable<object>, object> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
int starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
ValueTuple<IEnumerable<object>, object> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(ValueTuple<IEnumerable<object>, object> starts, int limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
ValueTuple<IEnumerable<object>, object> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
int limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(IGraphNodeBase starts, IGraphNodeBase limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IGraphNodeBase starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IGraphNodeBase limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(ValueTuple<IEnumerable<object>, object> starts, IGraphNodeBase limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
ValueTuple<IEnumerable<object>, object> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IGraphNodeBase limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(int starts, IEnumerable<int> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
int starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IEnumerable<int> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(IEnumerable<int> starts, IEnumerable<int> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IEnumerable<int> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IEnumerable<int> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(IGraphNodeBase starts, ValueTuple<IEnumerable<object>, object> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IGraphNodeBase starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
ValueTuple<IEnumerable<object>, object> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(IGraphNodeBase starts, IEnumerable<int> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IGraphNodeBase starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IEnumerable<int> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(int starts, IGraphNodeBase limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
int starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
IGraphNodeBase limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(ValueTuple<IEnumerable<object>, object> starts, ValueTuple<IEnumerable<object>, object> limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
ValueTuple<IEnumerable<object>, object> starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
ValueTuple<IEnumerable<object>, object> limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

RaggedTensor range(IGraphNodeBase starts, int limits, ImplicitContainer<T> deltas, DType dtype, string name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
IGraphNodeBase starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
int limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
DType dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
string name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

object range_dyn(object starts, object limits, ImplicitContainer<T> deltas, object dtype, object name, ImplicitContainer<T> row_splits_dtype)

Returns a `RaggedTensor` containing the specified sequences of numbers.

Each row of the returned `RaggedTensor` contains a single sequence: If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the tf.range op, which returns an error for these cases.

Examples: The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs.
Parameters
object starts
Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`.
object limits
Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range.
ImplicitContainer<T> deltas
Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`.
object dtype
The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args.
object name
A name for the operation.
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
object
A `RaggedTensor` of type `dtype` with `ragged_rank=1`.
Show Example
ragged.range(starts, limits, deltas)[i] ==
                tf.range(starts[i], limits[i], deltas[i]) 

Tensor row_splits_to_segment_ids(IGraphNodeBase splits, string name, object out_type)

Generates the segmentation corresponding to a RaggedTensor `row_splits`.

Returns an integer vector `segment_ids`, where `segment_ids[i] == j` if `splits[j] <= i < splits[j+1]`. Example:
Parameters
IGraphNodeBase splits
A sorted 1-D integer Tensor. `splits[0]` must be zero.
string name
A name prefix for the returned tensor (optional).
object out_type
The dtype for the return value. Defaults to `splits.dtype`, or tf.int64 if `splits` does not have a dtype.
Returns
Tensor
A sorted 1-D integer Tensor, with `shape=[splits[-1]]`
Show Example
>>> ragged.row_splits_to_segment_ids([0, 3, 3, 5, 6, 9]).eval()
            [ 0 0 0 2 2 3 4 4 4 ] 

Tensor row_splits_to_segment_ids(IEnumerable<int> splits, string name, object out_type)

Generates the segmentation corresponding to a RaggedTensor `row_splits`.

Returns an integer vector `segment_ids`, where `segment_ids[i] == j` if `splits[j] <= i < splits[j+1]`. Example:
Parameters
IEnumerable<int> splits
A sorted 1-D integer Tensor. `splits[0]` must be zero.
string name
A name prefix for the returned tensor (optional).
object out_type
The dtype for the return value. Defaults to `splits.dtype`, or tf.int64 if `splits` does not have a dtype.
Returns
Tensor
A sorted 1-D integer Tensor, with `shape=[splits[-1]]`
Show Example
>>> ragged.row_splits_to_segment_ids([0, 3, 3, 5, 6, 9]).eval()
            [ 0 0 0 2 2 3 4 4 4 ] 

Tensor row_splits_to_segment_ids(ValueTuple<IEnumerable<object>, object> splits, string name, object out_type)

Generates the segmentation corresponding to a RaggedTensor `row_splits`.

Returns an integer vector `segment_ids`, where `segment_ids[i] == j` if `splits[j] <= i < splits[j+1]`. Example:
Parameters
ValueTuple<IEnumerable<object>, object> splits
A sorted 1-D integer Tensor. `splits[0]` must be zero.
string name
A name prefix for the returned tensor (optional).
object out_type
The dtype for the return value. Defaults to `splits.dtype`, or tf.int64 if `splits` does not have a dtype.
Returns
Tensor
A sorted 1-D integer Tensor, with `shape=[splits[-1]]`
Show Example
>>> ragged.row_splits_to_segment_ids([0, 3, 3, 5, 6, 9]).eval()
            [ 0 0 0 2 2 3 4 4 4 ] 

object row_splits_to_segment_ids_dyn(object splits, object name, object out_type)

Generates the segmentation corresponding to a RaggedTensor `row_splits`.

Returns an integer vector `segment_ids`, where `segment_ids[i] == j` if `splits[j] <= i < splits[j+1]`. Example:
Parameters
object splits
A sorted 1-D integer Tensor. `splits[0]` must be zero.
object name
A name prefix for the returned tensor (optional).
object out_type
The dtype for the return value. Defaults to `splits.dtype`, or tf.int64 if `splits` does not have a dtype.
Returns
object
A sorted 1-D integer Tensor, with `shape=[splits[-1]]`
Show Example
>>> ragged.row_splits_to_segment_ids([0, 3, 3, 5, 6, 9]).eval()
            [ 0 0 0 2 2 3 4 4 4 ] 

Tensor segment_ids_to_row_splits(IGraphNodeBase segment_ids, IGraphNodeBase num_segments, object out_type, string name)

Generates the RaggedTensor `row_splits` corresponding to a segmentation.

Returns an integer vector `splits`, where `splits[0] = 0` and `splits[i] = splits[i-1] + count(segment_ids==i)`. Example:
Parameters
IGraphNodeBase segment_ids
A 1-D integer Tensor.
IGraphNodeBase num_segments
A scalar integer indicating the number of segments. Defaults to `max(segment_ids) + 1` (or zero if `segment_ids` is empty).
object out_type
The dtype for the return value. Defaults to `segment_ids.dtype`, or tf.int64 if `segment_ids` does not have a dtype.
string name
A name prefix for the returned tensor (optional).
Returns
Tensor
A sorted 1-D integer Tensor, with `shape=[num_segments + 1]`.
Show Example
>>> ragged.segment_ids_to_row_splits([0, 0, 0, 2, 2, 3, 4, 4, 4]).eval()
            [ 0 3 3 5 6 9 ] 

Tensor segment_ids_to_row_splits(IEnumerable<int> segment_ids, int num_segments, object out_type, string name)

Generates the RaggedTensor `row_splits` corresponding to a segmentation.

Returns an integer vector `splits`, where `splits[0] = 0` and `splits[i] = splits[i-1] + count(segment_ids==i)`. Example:
Parameters
IEnumerable<int> segment_ids
A 1-D integer Tensor.
int num_segments
A scalar integer indicating the number of segments. Defaults to `max(segment_ids) + 1` (or zero if `segment_ids` is empty).
object out_type
The dtype for the return value. Defaults to `segment_ids.dtype`, or tf.int64 if `segment_ids` does not have a dtype.
string name
A name prefix for the returned tensor (optional).
Returns
Tensor
A sorted 1-D integer Tensor, with `shape=[num_segments + 1]`.
Show Example
>>> ragged.segment_ids_to_row_splits([0, 0, 0, 2, 2, 3, 4, 4, 4]).eval()
            [ 0 3 3 5 6 9 ] 

Tensor segment_ids_to_row_splits(IEnumerable<int> segment_ids, IGraphNodeBase num_segments, object out_type, string name)

Generates the RaggedTensor `row_splits` corresponding to a segmentation.

Returns an integer vector `splits`, where `splits[0] = 0` and `splits[i] = splits[i-1] + count(segment_ids==i)`. Example:
Parameters
IEnumerable<int> segment_ids
A 1-D integer Tensor.
IGraphNodeBase num_segments
A scalar integer indicating the number of segments. Defaults to `max(segment_ids) + 1` (or zero if `segment_ids` is empty).
object out_type
The dtype for the return value. Defaults to `segment_ids.dtype`, or tf.int64 if `segment_ids` does not have a dtype.
string name
A name prefix for the returned tensor (optional).
Returns
Tensor
A sorted 1-D integer Tensor, with `shape=[num_segments + 1]`.
Show Example
>>> ragged.segment_ids_to_row_splits([0, 0, 0, 2, 2, 3, 4, 4, 4]).eval()
            [ 0 3 3 5 6 9 ] 

Tensor segment_ids_to_row_splits(IGraphNodeBase segment_ids, int num_segments, object out_type, string name)

Generates the RaggedTensor `row_splits` corresponding to a segmentation.

Returns an integer vector `splits`, where `splits[0] = 0` and `splits[i] = splits[i-1] + count(segment_ids==i)`. Example:
Parameters
IGraphNodeBase segment_ids
A 1-D integer Tensor.
int num_segments
A scalar integer indicating the number of segments. Defaults to `max(segment_ids) + 1` (or zero if `segment_ids` is empty).
object out_type
The dtype for the return value. Defaults to `segment_ids.dtype`, or tf.int64 if `segment_ids` does not have a dtype.
string name
A name prefix for the returned tensor (optional).
Returns
Tensor
A sorted 1-D integer Tensor, with `shape=[num_segments + 1]`.
Show Example
>>> ragged.segment_ids_to_row_splits([0, 0, 0, 2, 2, 3, 4, 4, 4]).eval()
            [ 0 3 3 5 6 9 ] 

object segment_ids_to_row_splits_dyn(object segment_ids, object num_segments, object out_type, object name)

Generates the RaggedTensor `row_splits` corresponding to a segmentation.

Returns an integer vector `splits`, where `splits[0] = 0` and `splits[i] = splits[i-1] + count(segment_ids==i)`. Example:
Parameters
object segment_ids
A 1-D integer Tensor.
object num_segments
A scalar integer indicating the number of segments. Defaults to `max(segment_ids) + 1` (or zero if `segment_ids` is empty).
object out_type
The dtype for the return value. Defaults to `segment_ids.dtype`, or tf.int64 if `segment_ids` does not have a dtype.
object name
A name prefix for the returned tensor (optional).
Returns
object
A sorted 1-D integer Tensor, with `shape=[num_segments + 1]`.
Show Example
>>> ragged.segment_ids_to_row_splits([0, 0, 0, 2, 2, 3, 4, 4, 4]).eval()
            [ 0 3 3 5 6 9 ] 

object stack(IGraphNodeBase values, int axis, string name)

Stacks a list of rank-`R` tensors into one rank-`(R+1)` `RaggedTensor`.

Given a list of tensors or ragged tensors with the same rank `R` (`R >= axis`), returns a rank-`R+1` `RaggedTensor` `result` such that `result[i0...iaxis]` is `[value[i0...iaxis] for value in values]`.

#### Example:
Parameters
IGraphNodeBase values
A list of tf.Tensor or tf.RaggedTensor. May not be empty. All `values` must have the same rank and the same dtype; but unlike tf.stack, they can have arbitrary dimension sizes.
int axis
A python integer, indicating the dimension along which to stack. (Note: Unlike tf.stack, the `axis` parameter must be statically known.) Negative values are supported only if the rank of at least one `values` value is statically known.
string name
A name prefix for the returned tensor (optional).
Returns
object
A `RaggedTensor` with rank `R+1`. `result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values]))`.
Show Example
>>> t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
            >>> t2 = tf.ragged.constant([[6], [7, 8, 9]])
            >>> tf.ragged.stack([t1, t2], axis=0)
            [[[1, 2], [3, 4, 5]], [[6], [7, 9, 0]]]
            >>> tf.ragged.stack([t1, t2], axis=1)
            [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]] 

object stack(int values, int axis, string name)

Stacks a list of rank-`R` tensors into one rank-`(R+1)` `RaggedTensor`.

Given a list of tensors or ragged tensors with the same rank `R` (`R >= axis`), returns a rank-`R+1` `RaggedTensor` `result` such that `result[i0...iaxis]` is `[value[i0...iaxis] for value in values]`.

#### Example:
Parameters
int values
A list of tf.Tensor or tf.RaggedTensor. May not be empty. All `values` must have the same rank and the same dtype; but unlike tf.stack, they can have arbitrary dimension sizes.
int axis
A python integer, indicating the dimension along which to stack. (Note: Unlike tf.stack, the `axis` parameter must be statically known.) Negative values are supported only if the rank of at least one `values` value is statically known.
string name
A name prefix for the returned tensor (optional).
Returns
object
A `RaggedTensor` with rank `R+1`. `result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values]))`.
Show Example
>>> t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
            >>> t2 = tf.ragged.constant([[6], [7, 8, 9]])
            >>> tf.ragged.stack([t1, t2], axis=0)
            [[[1, 2], [3, 4, 5]], [[6], [7, 9, 0]]]
            >>> tf.ragged.stack([t1, t2], axis=1)
            [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]] 

object stack(RaggedTensor values, int axis, string name)

Stacks a list of rank-`R` tensors into one rank-`(R+1)` `RaggedTensor`.

Given a list of tensors or ragged tensors with the same rank `R` (`R >= axis`), returns a rank-`R+1` `RaggedTensor` `result` such that `result[i0...iaxis]` is `[value[i0...iaxis] for value in values]`.

#### Example:
Parameters
RaggedTensor values
A list of tf.Tensor or tf.RaggedTensor. May not be empty. All `values` must have the same rank and the same dtype; but unlike tf.stack, they can have arbitrary dimension sizes.
int axis
A python integer, indicating the dimension along which to stack. (Note: Unlike tf.stack, the `axis` parameter must be statically known.) Negative values are supported only if the rank of at least one `values` value is statically known.
string name
A name prefix for the returned tensor (optional).
Returns
object
A `RaggedTensor` with rank `R+1`. `result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values]))`.
Show Example
>>> t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
            >>> t2 = tf.ragged.constant([[6], [7, 8, 9]])
            >>> tf.ragged.stack([t1, t2], axis=0)
            [[[1, 2], [3, 4, 5]], [[6], [7, 9, 0]]]
            >>> tf.ragged.stack([t1, t2], axis=1)
            [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]] 

object stack_dyn(object values, ImplicitContainer<T> axis, object name)

Stacks a list of rank-`R` tensors into one rank-`(R+1)` `RaggedTensor`.

Given a list of tensors or ragged tensors with the same rank `R` (`R >= axis`), returns a rank-`R+1` `RaggedTensor` `result` such that `result[i0...iaxis]` is `[value[i0...iaxis] for value in values]`.

#### Example:
Parameters
object values
A list of tf.Tensor or tf.RaggedTensor. May not be empty. All `values` must have the same rank and the same dtype; but unlike tf.stack, they can have arbitrary dimension sizes.
ImplicitContainer<T> axis
A python integer, indicating the dimension along which to stack. (Note: Unlike tf.stack, the `axis` parameter must be statically known.) Negative values are supported only if the rank of at least one `values` value is statically known.
object name
A name prefix for the returned tensor (optional).
Returns
object
A `RaggedTensor` with rank `R+1`. `result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values]))`.
Show Example
>>> t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
            >>> t2 = tf.ragged.constant([[6], [7, 8, 9]])
            >>> tf.ragged.stack([t1, t2], axis=0)
            [[[1, 2], [3, 4, 5]], [[6], [7, 9, 0]]]
            >>> tf.ragged.stack([t1, t2], axis=1)
            [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]] 

RaggedTensor stack_dynamic_partitions(IGraphNodeBase data, IGraphNodeBase partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IGraphNodeBase data
A `Tensor` or `RaggedTensor` containing the values to stack.
IGraphNodeBase partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IEnumerable<string> data, IEnumerable<object> partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IEnumerable<string> data
A `Tensor` or `RaggedTensor` containing the values to stack.
IEnumerable<object> partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IEnumerable<string> data, RaggedTensor partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IEnumerable<string> data
A `Tensor` or `RaggedTensor` containing the values to stack.
RaggedTensor partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IEnumerable<string> data, int partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IEnumerable<string> data
A `Tensor` or `RaggedTensor` containing the values to stack.
int partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IEnumerable<string> data, IGraphNodeBase partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IEnumerable<string> data
A `Tensor` or `RaggedTensor` containing the values to stack.
IGraphNodeBase partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IEnumerable<string> data, object partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IEnumerable<string> data
A `Tensor` or `RaggedTensor` containing the values to stack.
object partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(RaggedTensor data, IEnumerable<object> partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
RaggedTensor data
A `Tensor` or `RaggedTensor` containing the values to stack.
IEnumerable<object> partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(RaggedTensor data, RaggedTensor partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
RaggedTensor data
A `Tensor` or `RaggedTensor` containing the values to stack.
RaggedTensor partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(RaggedTensor data, int partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
RaggedTensor data
A `Tensor` or `RaggedTensor` containing the values to stack.
int partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(object data, RaggedTensor partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
object data
A `Tensor` or `RaggedTensor` containing the values to stack.
RaggedTensor partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IGraphNodeBase data, RaggedTensor partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IGraphNodeBase data
A `Tensor` or `RaggedTensor` containing the values to stack.
RaggedTensor partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IGraphNodeBase data, IEnumerable<object> partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IGraphNodeBase data
A `Tensor` or `RaggedTensor` containing the values to stack.
IEnumerable<object> partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(int data, object partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
int data
A `Tensor` or `RaggedTensor` containing the values to stack.
object partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IGraphNodeBase data, object partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IGraphNodeBase data
A `Tensor` or `RaggedTensor` containing the values to stack.
object partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(int data, IGraphNodeBase partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
int data
A `Tensor` or `RaggedTensor` containing the values to stack.
IGraphNodeBase partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(object data, IEnumerable<object> partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
object data
A `Tensor` or `RaggedTensor` containing the values to stack.
IEnumerable<object> partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(IGraphNodeBase data, int partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
IGraphNodeBase data
A `Tensor` or `RaggedTensor` containing the values to stack.
int partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(RaggedTensor data, object partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
RaggedTensor data
A `Tensor` or `RaggedTensor` containing the values to stack.
object partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(object data, IGraphNodeBase partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
object data
A `Tensor` or `RaggedTensor` containing the values to stack.
IGraphNodeBase partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(object data, object partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
object data
A `Tensor` or `RaggedTensor` containing the values to stack.
object partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(int data, int partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
int data
A `Tensor` or `RaggedTensor` containing the values to stack.
int partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(int data, RaggedTensor partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
int data
A `Tensor` or `RaggedTensor` containing the values to stack.
RaggedTensor partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(int data, IEnumerable<object> partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
int data
A `Tensor` or `RaggedTensor` containing the values to stack.
IEnumerable<object> partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(RaggedTensor data, IGraphNodeBase partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
RaggedTensor data
A `Tensor` or `RaggedTensor` containing the values to stack.
IGraphNodeBase partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

RaggedTensor stack_dynamic_partitions(object data, int partitions, object num_partitions, string name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
object data
A `Tensor` or `RaggedTensor` containing the values to stack.
int partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
string name
A name prefix for the returned tensor (optional).
Returns
RaggedTensor
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

object stack_dynamic_partitions_dyn(object data, object partitions, object num_partitions, object name)

Stacks dynamic partitions of a Tensor or RaggedTensor.

Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order.

If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`.

####Example:
Parameters
object data
A `Tensor` or `RaggedTensor` containing the values to stack.
object partitions
An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted.
object num_partitions
An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`.
object name
A name prefix for the returned tensor (optional).
Returns
object
A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`.
Show Example
>>> data           = ['a', 'b', 'c', 'd', 'e']
            >>> partitions     = [  3,   0,   2,   2,   3]
            >>> num_partitions = 5
            >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
             

Public properties

PythonFunctionContainer boolean_mask_fn get;

PythonFunctionContainer constant_fn get;

PythonFunctionContainer constant_value_fn get;

PythonFunctionContainer map_flat_values_fn get;

PythonFunctionContainer placeholder_fn get;

PythonFunctionContainer range_fn get;

PythonFunctionContainer row_splits_to_segment_ids_fn get;

PythonFunctionContainer segment_ids_to_row_splits_fn get;

PythonFunctionContainer stack_dynamic_partitions_fn get;

PythonFunctionContainer stack_fn get;